THREE-DIMENSIONAL MAGNETOGRADIENT WAVES IN THE UPPER ATMOSPHERE
General dispersion equation has been obtained for three-dimensional electromagnetic planetary waves, from which follows, as particular case Khantadze results in one-dimension case. It was shown that partial magnetic field line freezing-in as in one-dimension case lead to the excitation of both “fa...
Gespeichert in:
Veröffentlicht in: | JOURNAL OF ADVANCES IN PHYSICS 2017-08, Vol.13 (4), p.4881-4887 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | General dispersion equation has been obtained for three-dimensional electromagnetic planetary waves, from which follows, as particular case Khantadze results in one-dimension case. It was shown that partial magnetic field line freezing-in as in one-dimension case lead to the excitation of both “fast†and “slow†planetary waves, in two-liquid approximation (i.e. at ion drag by neutral particles) they are represent oscillations of magnetized electrons and partially magnetized ions in E region of the ionosphere. In F region of the ionosphere using one-liquid approximation only “fast†planetary wave will be generated representing oscillation of medium as a whole. Hence, it was shown that three-dimension magnetogradient planetary waves are exist in all components of the ionosphere, and as exact solutions, with well-known slow short-wave MHD waves, are simple mathematical consequence of the MHD equations for the ionosphere. |
---|---|
ISSN: | 2347-3487 2347-3487 |
DOI: | 10.24297/jap.v13i5.6122 |