New Aggregation Operator for Triangular Fuzzy Numbers based on the Geometric Means of the Slopes of the L- and R- Membership Functions
In recent work authors have proposed four new aggregation operators for triangular and trapezoidal fuzzy numbers based on means of apex angles [1][2][3][4]. Subsequently authors have proposed [5] a new aggregation operator for TFNs based on the arithmetic mean of slopes of the L- and R- membership l...
Gespeichert in:
Veröffentlicht in: | International journal of computer & technology 2012-04, Vol.2 (2), p.74-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent work authors have proposed four new aggregation operators for triangular and trapezoidal fuzzy numbers based on means of apex angles [1][2][3][4]. Subsequently authors have proposed [5] a new aggregation operator for TFNs based on the arithmetic mean of slopes of the L- and R- membership lines. In this paper the work is extended and a new aggregation operator for TFNs is proposed in which the L- and R- membership function lines of the aggregate TFN have slopes which are the geometric means of the corresponding L- and R- slopes of the individual TFNs. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TFN aggregates have also been computed. |
---|---|
ISSN: | 2277-3061 2277-3061 |
DOI: | 10.24297/ijct.v2i2b.2634 |