Hankel and symmetric Toeplitz determinants for Sakaguchi starlike functions
In this paper, we consider the class of starlike functions with respect to symmetric points which are also known as Sakaguchi starlike functions. We de- termine best possible bounds on Zalcman conjecture |a_n^2 – a_(2n-1) | and generalized Zalcman conjecture |aman − am+n−1| for n = 2 and n = 4, m =...
Gespeichert in:
Veröffentlicht in: | Studia Universitatis Babeș-Bolyai. Mathematica 2024-09, Vol.69 (3), p.517-534 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the class of starlike functions with respect to symmetric points which are also known as Sakaguchi starlike functions. We de- termine best possible bounds on Zalcman conjecture |a_n^2 – a_(2n-1) | and generalized Zalcman conjecture |aman − am+n−1| for n = 2 and n = 4, m = 2, respectively for such functions. Further, we compute estimate on third order and fourth order Hankel determinants. As well, we also obtain estimates on third and fourth symmetric Toeplitz determinants.
Mathematics Subject Classification (2010): 30C45, 30C80.
Keywords: Starlike function, Sakaguchi starlike functions, Zalcman conjecture, third and forth order Hankel determinants, second, third and fourth order symmetric Toeplitz determinants. |
---|---|
ISSN: | 0252-1938 2065-961X |
DOI: | 10.24193/subbmath.2024.3.04 |