Hankel and symmetric Toeplitz determinants for Sakaguchi starlike functions

In this paper, we consider the class of starlike functions with respect to symmetric points which are also known as Sakaguchi starlike functions. We de- termine best possible bounds on Zalcman conjecture |a_n^2 – a_(2n-1) | and generalized Zalcman conjecture |aman − am+n−1| for n = 2 and n = 4, m =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia Universitatis Babeș-Bolyai. Mathematica 2024-09, Vol.69 (3), p.517-534
Hauptverfasser: Kumar, Sushil, Anand, Swati, Jain, Naveen Kumar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the class of starlike functions with respect to symmetric points which are also known as Sakaguchi starlike functions. We de- termine best possible bounds on Zalcman conjecture |a_n^2 – a_(2n-1) | and generalized Zalcman conjecture |aman − am+n−1| for n = 2 and n = 4, m = 2, respectively for such functions. Further, we compute estimate on third order and fourth order Hankel determinants. As well, we also obtain estimates on third and fourth symmetric Toeplitz determinants. Mathematics Subject Classification (2010): 30C45, 30C80. Keywords: Starlike function, Sakaguchi starlike functions, Zalcman conjecture, third and forth order Hankel determinants, second, third and fourth order symmetric Toeplitz determinants.
ISSN:0252-1938
2065-961X
DOI:10.24193/subbmath.2024.3.04