A p(x)-Kirchhoff Type Problem Involving the p(x)-Laplacian-Like Operators With Dirichlet Boundary Condition

This paper deals with a class of p(x)-Kirchhoff type problems involving the p(x)-Laplacian-like operators, arising from the capillarity phenomena, depending on two real parameters with Dirichlet boundary conditions. Using a topological degree for a class of demicontinuous operators of generalized (S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia Universitatis Babeș-Bolyai. Mathematica 2024-06, Vol.69 (2), p.351-366
Hauptverfasser: El Ouaarabi, Mohamed, El Hammar, Hasnae, Allalou, Chakir, Melliani, Said
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with a class of p(x)-Kirchhoff type problems involving the p(x)-Laplacian-like operators, arising from the capillarity phenomena, depending on two real parameters with Dirichlet boundary conditions. Using a topological degree for a class of demicontinuous operators of generalized (S+), we prove the existence of weak solutions of this problem. Our results extend and generalize several corresponding results from the existing literature. Keywords: p(x)-Kirchhoff type problems, p(x)-Laplacian-like operators, weak solutions, variable exponent Sobolev spaces.
ISSN:0252-1938
2065-961X
DOI:10.24193/subbmath.2024.2.07