A p(x)-Kirchhoff Type Problem Involving the p(x)-Laplacian-Like Operators With Dirichlet Boundary Condition
This paper deals with a class of p(x)-Kirchhoff type problems involving the p(x)-Laplacian-like operators, arising from the capillarity phenomena, depending on two real parameters with Dirichlet boundary conditions. Using a topological degree for a class of demicontinuous operators of generalized (S...
Gespeichert in:
Veröffentlicht in: | Studia Universitatis Babeș-Bolyai. Mathematica 2024-06, Vol.69 (2), p.351-366 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with a class of p(x)-Kirchhoff type problems involving the p(x)-Laplacian-like operators, arising from the capillarity phenomena, depending on two real parameters with Dirichlet boundary conditions. Using a topological degree for a class of demicontinuous operators of generalized (S+), we prove the existence of weak solutions of this problem. Our results extend and generalize several corresponding results from the existing literature.
Keywords: p(x)-Kirchhoff type problems, p(x)-Laplacian-like operators, weak solutions, variable exponent Sobolev spaces. |
---|---|
ISSN: | 0252-1938 2065-961X |
DOI: | 10.24193/subbmath.2024.2.07 |