Transcriptional profiling of Mycobacterium smegmatis exposed to subinhibitory concentrations of G4-stabilizing ligands
The spread of Mycobacterium tuberculosis drug resistance accentuates the demand for anti-tuberculosis drugs with a fundamentally new mechanism of action without conferring cross-resistance. G-quadruplexes (G4, non-canonical DNA structures) are plausible new drug targets. Although G4-stabilizing liga...
Gespeichert in:
Veröffentlicht in: | Bulletin of RSMU 2022-05 (2022(3)) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spread of Mycobacterium tuberculosis drug resistance accentuates the demand for anti-tuberculosis drugs with a fundamentally new mechanism of action without conferring cross-resistance. G-quadruplexes (G4, non-canonical DNA structures) are plausible new drug targets. Although G4-stabilizing ligands have been shown to inhibit mycobacterial growth, the exact mechanism of their action is uncertain. The aim of this study was to assess a possible correlation between putative G4 elements in a model mycobacterial strain M. smegmatis MC2155 and transcriptomic changes under the action of subinhibitory concentrations of G4 ligands BRACO-19 and TMPyP4. We also planned to compare the results with corresponding data previously obtained by us using higher, inhibitory concentrations of these ligands. For BRACO-19, we identified 589 (316↑; 273↓) and 865 (555↑; 310↓) differentially expressed genes at 5 µМ and 10 µМ, respectively. For TMPyP4, we observed the opposite trend, the number of differentially expressed genes decreased at higher concentration of the ligand: 754 (337↑; 417↓) and 702 (359↑; 343↓) for 2 µМ and 4 µМ, respectively. Statistical analysis revealed no correlation between ligand-induced transcriptomic changes and genomic localization of the putative quadruplex-forming sequences. At the same time, the data indicate certain functional specificity of the ligand-mediated transcriptomic effects, with TMPyP4 significantly affecting expression levels of transcription factors and arginine biosynthesis genes and BRACO-19 significantly affecting expression levels of iron metabolism and replication and reparation system genes. |
---|---|
ISSN: | 2500-1094 2542-1204 |
DOI: | 10.24075/brsmu.2022.024 |