New in vitro model to evaluate kinetics of antimycobacterial drug release from bioresorbable polymeric carriers

Sustained-release drugs against tuberculosis are a promising approach to therapy since they positively affect patient compliance with long regimens, especially when it comes to the multidrug-resistant form of the disease. Conventional UV-visible spectroscopy does not work well with multicomponential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of RSMU 2020-07 (2020(4)), p.10-15
Hauptverfasser: Andreevskaya, SN, Smirnova, TG, Antonov, EN, Chernousova, LN, Bogorodsky, SE, Larionova, EE, Popov, VK, Ergeshov, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sustained-release drugs against tuberculosis are a promising approach to therapy since they positively affect patient compliance with long regimens, especially when it comes to the multidrug-resistant form of the disease. Conventional UV-visible spectroscopy does not work well with multicomponential culture media used for growing M. tuberculosis. The aim of this study was to develop a method for evaluating the kinetics of anti-tuberculosis drug released from bioresorbable polymeric carriers suitable for screening a wide range of encapsulated prolonged-release drugs and identifying the best performing candidate. While studying the growth dynamics of the laboratory susceptible strain M. tuberculosis H37Rv in the presence of different levofloxacin concentrations (from 0.03 to 0.4 μg/ml), we developed a model, which is essentially a set of 2 parallel experiments evaluating the kinetics of drug release into the culture medium. The results of these 2 experiments conducted on 3 encapsulated forms of levofloxacin loaded onto bioresorbable polymeric PLGA carriers (particles sized 50 μm and 100 μm and the matrix) revealed that release kinetics of the drug largely depended on the type of polymeric carrier. The best encapsulation of the antibiotic and its gradual release into the culture medium was observed for the matrix. All experiments were run in 3 replicates. The obtained data were analyzed using descriptive statistics.
ISSN:2500-1094
2542-1204
DOI:10.24075/brsmu.2020.050