Changes in the nociceptive response to thermal stimulation in rats following administration of N-terminal analogs of the adrenocorticotropic hormone

Melanocortins (MCs) are an increasingly studied class of regulatory peptides exerting a wide range of biological effects. All naturally occurring MCs share a His-Phe-Arg-Trp fragment (HFRW) corresponding to the sequence of amino acid residues 6–9 of the adrenocorticotropic hormone (ACTH6-9), which i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of RSMU 2019-12 (2019;6), p.33-36
Hauptverfasser: Dodonova, S.A., Bobyntsev, I.I., Belykh, A.E., Andreeva, L.A., Myasoedov, N.F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melanocortins (MCs) are an increasingly studied class of regulatory peptides exerting a wide range of biological effects. All naturally occurring MCs share a His-Phe-Arg-Trp fragment (HFRW) corresponding to the sequence of amino acid residues 6–9 of the adrenocorticotropic hormone (ACTH6-9), which is also a central active component of ACTH. Attaching the Pro-Gly-Pro (PGP) sequence to the C-end of the peptide extends the duration of the peptide’s effect. The aim of this study was to investigate the effects of ACTH6-9-PGP (HFRWPGP) on the spinal and supraspinal mechanisms involved in the nociceptive response in rats and to compare them to those of its structural analog ACTH4-7-PGP (MEHFPGP). ACTH6-9-PGP effects were studied following the intraperitoneal administration of the peptide at doses 0.5, 1.5, 5, 15, 50, 150, or 450 μg/kg 15 minutes before the hot plate and tail flick tests. ACTH4-7-PGP effects were studied under the same conditions at the following doses: 50, 150 and 450 μg/kg. We found that ACTH6-9-PGP administered intraperitoneally at 5 or 150 μg/kg induced a pronounced reduction in pain sensitivity 15 and 45 minutes after the injection (p = 0.04); this effect was implemented via supraspinal mechanisms. In the tail flick test, 150 μg/kg ACTH6-9-PGP increased pain sensitivity, with the participation of segmental spinal mechanisms (p = 0.04). ACTH4-7-PGP did not have any effect on the studied mechanisms of pain sensitivity. Thus, unlike ACTH4-7-PGP, ACTH6-9-PGP can both increase pain sensitivity and exert an analgesic effect.
ISSN:2500-1094
2542-1204
DOI:10.24075/brsmu.2019.085