A modified choice function hyper-heuristic with Boltzmann function

Hyper-heuristics are a subclass of high-level research methods that function in a low-level heuristic research space. Their aim objective is to improve the level of generality for solving combinatorial optimization problems using two main components: a methodology for the heuristic selection and a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Modeling and Computing 2021, Vol.8 (4), p.736-746
Hauptverfasser: Mellouli, O., Hafidi, I., Metrane, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyper-heuristics are a subclass of high-level research methods that function in a low-level heuristic research space. Their aim objective is to improve the level of generality for solving combinatorial optimization problems using two main components: a methodology for the heuristic selection and a move acceptance criterion, to ensure intensification and diversification [1]. Thus, rather than working directly on the problem's solutions and selecting one of them to proceed to the next step at each stage, hyper-heuristics operates on a low-level heuristic research space. The choice function is one of the hyper-heuristics that have proven their efficiency in solving combinatorial optimization problems [2–4]. At each iteration, the selection of heuristics is dependent on a score calculated by combining three different measures to guarantee both intensification and diversification for the heuristics choice process. The heuristic with the highest score is therefore chosen to be applied to the problem. Therefore, the key to the success of the choice function is to choose the correct weight parameters of its three measures. In this study, we make a state of the art in hyper-heuristic research and propose a new method that automatically controls these weight parameters based on the Boltzmann function. The results obtained from its application on five problem domains are compared with those of the standard, modified choice function proposed by Drake et al. [2,3].
ISSN:2312-9794
2415-3788
DOI:10.23939/mmc2021.04.736