Ranking with Adaptive Neighbors

Retrieving the most similar objects in a large-scale database for a given query is a fundamental building block in many application domains, ranging from web searches, visual, cross media, to document retrievals. Stateof-the-art approaches have mainly focused on capturing the underlying geometry of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tsinghua science and technology 2017-12, Vol.22 (6), p.733-738
Hauptverfasser: Li, Muge, Li, Liangyue, Nie, Feiping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retrieving the most similar objects in a large-scale database for a given query is a fundamental building block in many application domains, ranging from web searches, visual, cross media, to document retrievals. Stateof-the-art approaches have mainly focused on capturing the underlying geometry of the data manifolds. Graphbased approaches, in particular, define various diffusion processes on weighted data graphs. Despite success,these approaches rely on fixed-weight graphs, making ranking sensitive to the input affinity matrix. In this study,we propose a new ranking algorithm that simultaneously learns the data affinity matrix and the ranking scores.The proposed optimization formulation assigns adaptive neighbors to each point in the data based on the local connectivity, and the smoothness constraint assigns similar ranking scores to similar data points. We develop a novel and efficient algorithm to solve the optimization problem. Evaluations using synthetic and real datasets suggest that the proposed algorithm can outperform the existing methods.
ISSN:1007-0214
1878-7606
1007-0214
DOI:10.23919/TST.2017.8195354