Joint optimization of latency and energy consumption for mobile edge computing based proximity detection in road networks
In recent years, artificial intelligence and automotive industry have developed rapidly, and autonomous driving has gradually become the focus of the industry. In road networks, the problem of proximity detection refers to detecting whether two moving objects are close to each other or not in real t...
Gespeichert in:
Veröffentlicht in: | China communications 2022-04, Vol.19 (4), p.274-290 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, artificial intelligence and automotive industry have developed rapidly, and autonomous driving has gradually become the focus of the industry. In road networks, the problem of proximity detection refers to detecting whether two moving objects are close to each other or not in real time. However, the battery life and computing capability of mobile devices are limited in the actual scene, which results in high latency and energy consumption. Therefore, it is a tough problem to determine the proximity relationship between mobile users with low latency and energy consumption. In this article, we aim at finding a tradeoff between latency and energy consumption. We formalize the computation offloading problem base on mobile edge computing (MEC) into a constrained multiobjective optimization problem (CMOP) and utilize NSGA-II to solve it. The simulation results demonstrate that NSGA-II can find the Pareto set, which reduces the latency and energy consumption effectively. In addition, a large number of solutions provided by the Pareto set give us more choices of the offloading decision according to the actual situation. |
---|---|
ISSN: | 1673-5447 |
DOI: | 10.23919/JCC.2022.04.020 |