Accuracy Improvement of the XRD-Rietveld Method for the Quantification of Crystalline Phases in Iron Sintered Ores Through the Correction of Micro-absorption Effects
The mass fraction of each crystalline phase in inorganic materials can be investigated using the Rietveld refinement of the X-ray diffraction (XRD) patterns. For quantitative analysis, differences in the values of the linear absorption coefficient, μ, among the crystalline phases must be considered...
Gespeichert in:
Veröffentlicht in: | Tetsu to hagane 2021, Vol.107(3), pp.210-218 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mass fraction of each crystalline phase in inorganic materials can be investigated using the Rietveld refinement of the X-ray diffraction (XRD) patterns. For quantitative analysis, differences in the values of the linear absorption coefficient, μ, among the crystalline phases must be considered when certain X-ray sources are used, because such differences often affect their mass fractions. Herein, we evaluate the effects of the differences between the Cu and Co Kα X-rays on the mass fractions of the crystalline phases in iron sintered ores using the XRD-Rietveld method by performing two types of XRD measurements. Type 1 samples modeled materials with two different particle size combinations of α-Fe2O3 and ZnO. Type 2 samples used powder mixtures to simulate iron sintered ores composed of α-Fe2O3, and synthesized SFCA and SFCA-I in various mass fractions. Moreover, a correction method was developed using the Taylor-Matulis (TM) correction that considers the μ of each phase and the average particle diameter of each crystalline phase determined by scanning electron microscopy with energy dispersive spectroscopy. For type 1 samples, results that were in good agreement with the initially-charged mass fractions could be obtained using the TM correction, even in the presence of significant differences in R between α-Fe2O3 and ZnO. The results for type 2 samples confirmed that quantitatively accurate mass fractions could be obtained using the TM correction with an accuracy of approximately ±3 mass% for Cu and Co sources, whereas the error was greater than ±3 mass% for Cu source when the TM correction was not applied. |
---|---|
ISSN: | 0021-1575 1883-2954 |
DOI: | 10.2355/tetsutohagane.TETSU-2020-098 |