Effect of Heat Treatment on Peel Strength of 16Cr-Ferritic Stainless Steel / Aluminum Rolled Clad Sheet and Proposed Joint Mechanism

The peel strength of 16Cr-ferritic stainless steel / aluminum rolled clad sheet is improved by heat treatment at 300 to 500 °C after clad rolling. The joint mechanism was studied by analyzing the fracture surface after the peel test, taking into account the characteristics of the peel test method.Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tetsu to hagane 2019, Vol.105(4), pp.462-470
Hauptverfasser: Okui, Toshiyuki, Ushioda, Kohsaku
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The peel strength of 16Cr-ferritic stainless steel / aluminum rolled clad sheet is improved by heat treatment at 300 to 500 °C after clad rolling. The joint mechanism was studied by analyzing the fracture surface after the peel test, taking into account the characteristics of the peel test method.The detailed investigation into the fracture surface after peel test allows us to classify fracture sites into three categories: 1) ductile fracture in aluminum base material, 2) flake-like fracture in 16Cr-stainless steel, and 3) fracture in the intermediate interface layer between aluminum and 16Cr-stainless steel. It was revealed that the intermediate layer breakage mainly occurs in the as-rolled clad sheet; whereas after heat treatment at 300 to 500°C, the aluminum base material breakage predominantly occurs.Close observation into the state of deformation at the crack tip of the peel tested specimen leads us to conclude that clad rolled and subsequently annealed aluminum undergoes plastic deformation during the peel test because significant softening easily takes place preferentially in aluminum during low temperature heat treatment. This might imply the decrease in peel strength by heat treatment, which is different from the fact. However, the load area responsible for peeling force during the peel test is inferred to substantially increase, which gives rise to the increase in peel strength. This is because the peel strength is simply evaluated by dividing the peel force by the width of the specimen.
ISSN:0021-1575
1883-2954
DOI:10.2355/tetsutohagane.TETSU-2018-133