Prediction of Silicon Content of Hot Metal in Blast Furnace Based on Optuna-GBDT

The silicon content of hot metal is a key index for the determination of blast furnace status, and accurate prediction of the silicon content of hot metal is crucial for blast furnace ironmaking. First, 10992 sets of blast furnace data obtained from the site of an iron and steel enterprise were prep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2024/06/15, Vol.64(8), pp.1240-1250
Hauptverfasser: Meng, Lili, Liu, Jinxiang, Liu, Ran, Li, Hongyang, Zheng, Zhi, Peng, Yao, Cui, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The silicon content of hot metal is a key index for the determination of blast furnace status, and accurate prediction of the silicon content of hot metal is crucial for blast furnace ironmaking. First, 10992 sets of blast furnace data obtained from the site of an iron and steel enterprise were preprocessed. Then, 22 important feature parameters related to the silicon content of hot metal were screened by feature engineering. Finally, the hyperparameters of the Gradient Boosting Decision Tree (GBDT) algorithm model were optimized with the help of the Optuna framework, and the Optuna-GBDT model was established to predict the silicon content of hot metal. The experimental results show that compared with the Bayesian algorithm and the traditional stochastic search method, the Optuna framework can achieve better hyperparameter optimization with fewer iterations and smaller errors. The Optuna-GBDT model performs better in predicting the silicon content of hot metal compared with the optimized Random Forest (RF), Decision Tree and AdaBoost models, and the prediction results are basically in line with the actual values, with the mean absolute error (MAE) of 0.0094, the root mean square error (RMSE) of 0.0152, and the coefficient of determination (R2) of 0.975. The experimental results verified the validity and feasibility of establishing the Optuna-GBDT model to predict the silicon content of hot metal, which provides a reliable tool for iron and steel enterprises and helps to optimize the ironmaking process, improve production efficiency and product quality.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.ISIJINT-2024-028