Quantitative Evaluation of Solute Hydrogen Effect on Dislocation Density in a Low-carbon Stable Austenitic Stainless Steel
The effects of hydrogen on dislocations are generally understood through Transmission Electron Microscope studies. Novel methods of X-Ray Diffraction analysis provide the means of quantitative measurements of dislocation densities and the evolution of cross-slip in austenitic stainless steels. In a...
Gespeichert in:
Veröffentlicht in: | ISIJ International 2021/05/15, Vol.61(5), pp.1736-1738 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of hydrogen on dislocations are generally understood through Transmission Electron Microscope studies. Novel methods of X-Ray Diffraction analysis provide the means of quantitative measurements of dislocation densities and the evolution of cross-slip in austenitic stainless steels. In a low-carbon austenitic stainless steel (SUS316L) with and without solute hydrogen, and strained by cold-rolling, the maximum dislocation densities were measured, with hydrogen clearly increasing the maximum dislocation density, and the ratio of screw dislocations was shown to be similar regardless of hydrogen content. |
---|---|
ISSN: | 0915-1559 1347-5460 |
DOI: | 10.2355/isijinternational.ISIJINT-2020-677 |