Estimation of the Interaction Parameters of Liquid Fe using Neural Network Computation

The estimation of interaction parameters in liquid iron is strongly demanded due to the difficulty of their measurements and its time consuming for enormous combinations of target solute elements in liquid iron. Therefore, several estimation models have been developed so far. In this study, the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2020/10/15, Vol.60(10), pp.2134-2140
Hauptverfasser: Nakamoto, Masashi, Tanaka, Toshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The estimation of interaction parameters in liquid iron is strongly demanded due to the difficulty of their measurements and its time consuming for enormous combinations of target solute elements in liquid iron. Therefore, several estimation models have been developed so far. In this study, the interaction parameters between metal elements and/or metalloid elements in liquid Fe are estimated by neural network computation in order to improve the estimation accuracy. The input parameters used in the neural network computation are assessed by lateral inhibition learning. The estimation results by nerural network computation with the assessed parameters reasonably agree with the recommended values in the literature.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.ISIJINT-2019-821