Structural Evaluation of Molten Aluminosilicate by Combining Impedance Measurements and Cell Model Calculations
Molten oxides have been used for a range of processes; however, their physical and rheological properties affect the quality of products manufactured from them. Although various reports of structural analysis exist, the methods employed are typically time consuming. Herein, a method is established f...
Gespeichert in:
Veröffentlicht in: | ISIJ International 2020/01/15, Vol.60(1), pp.42-50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molten oxides have been used for a range of processes; however, their physical and rheological properties affect the quality of products manufactured from them. Although various reports of structural analysis exist, the methods employed are typically time consuming. Herein, a method is established for rapidly estimating the structures of melts by combining impedance measurements and thermodynamic calculations regarding the cell model. The melt structure is calculated using two thermodynamic parameters; however, these parameters have not yet been reported for systems containing alkali metal oxides. Thus, impedance measurements were carried out for SiO2–Al2O3–RO melt systems (R = Ca or Mg), and relationships between the equivalent circuit components and the thermodynamic parameters of the cell model were established. The structures of melts containing alkali metal oxides were then estimated by calculating the thermodynamic parameters of these systems by substituting the equivalent circuit components in the correlation equations. The structures estimated by the proposed method appear to correlate with those measured by NMR spectroscopy. |
---|---|
ISSN: | 0915-1559 1347-5460 |
DOI: | 10.2355/isijinternational.ISIJINT-2019-132 |