Recrystallization Behavior and Texture Evolution in Severely Cold-rolled Fe-0.3mass%Si and Fe-0.3mass%Al Alloys
The effect of Si and Al additions on the recrystallization behavior of severely cold-rolled Fe by 99.8% reduction was investigated in comparison with a previous study on pure Fe.6) In Fe-0.3mass%Si alloy, recrystallized grain with {411} and {411} preferentially nucleated at an early stage of recryst...
Gespeichert in:
Veröffentlicht in: | ISIJ International 2017/05/15, Vol.57(5), pp.921-928 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of Si and Al additions on the recrystallization behavior of severely cold-rolled Fe by 99.8% reduction was investigated in comparison with a previous study on pure Fe.6) In Fe-0.3mass%Si alloy, recrystallized grain with {411} and {411} preferentially nucleated at an early stage of recrystallization, and the texture did not changed substantially with the progress of recrystallization, which supports the oriented nucleation theory. The {411} texture significantly increased at the expense of recrystallized grains with {100} and ND// during normal grain growth. In Fe-0.3mass%Al alloy, dynamic recovery during heavy cold-rolling and substantial subgrain growth during low temperature annealing (350°C) occurred, similar to the case of pure Fe and different from that of Fe-0.3mass%Si alloy. This is presumably because of the subtle influence of Al addition on cross-slip frequency and smaller solute-dislocation/vacancy interaction as compared with Si addition. Furthermore, at the early stage of recrystallization, the tendency of oriented nucleation became weaker in Fe-0.3mass%Al alloy than that in Fe-0.3mass%Si alloy. With the progress of recrystallization, {100} and {111} orientations intensified. In the following normal grain growth, {100} texture intensified. However, the change in the texture during growth cannot be explained only by the size effect. A rigorous grain growth simulation model is required to explain the experimental facts by considering the dependency of grain boundary mobility and energy on grain boundary characteristics. |
---|---|
ISSN: | 0915-1559 1347-5460 |
DOI: | 10.2355/isijinternational.ISIJINT-2016-634 |