Artificial Neural Network Modeling of Flow Stress in Hot Rolling

In this study, an artificial neural network model is proposed to predict the flow stress variations during the hot rolling process. Optimization of the proposed neural network with respect to number of neurons within the hidden layer, different training methods and transfer functions of the neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2014/04/15, Vol.54(4), pp.872-879
Hauptverfasser: Aghasafari, Parya, Abdi, Hamid, Salimi, Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, an artificial neural network model is proposed to predict the flow stress variations during the hot rolling process. Optimization of the proposed neural network with respect to number of neurons within the hidden layer, different training methods and transfer functions of the neural network is performed. The results of the optimal network were compared with those of the conventional analytic method and it is shown that using an optimal neural network the mean calculated error is drastically reduced.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.54.872