Reduction of CO2 Emissions by Use of Pre-reduced Iron Ore as Sinter Raw Material

In order to reduce CO2 emissions at an ironmaking process, it is an effective measure to decrease a bonding agent rate at an iron ore sinter plant. In this study, effect of using a pre-reduced iron ore as a part of a sinter raw material on a sintering process was investigated mainly from a viewpoint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2013/09/15, Vol.53(9), pp.1625-1632
Hauptverfasser: Yabe, Hideaki, Takamoto, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to reduce CO2 emissions at an ironmaking process, it is an effective measure to decrease a bonding agent rate at an iron ore sinter plant. In this study, effect of using a pre-reduced iron ore as a part of a sinter raw material on a sintering process was investigated mainly from a viewpoint of decreasing a bonding agent rate. Two brands of pisolitic iron ores were reduced up to wustite at 1173 K with reducing gas of which an oxidation degree was 55%. The pre-reduced iron ore was stable against reoxidation in the atmosphere and through a cyclic wet and dry treatment. Two brands of pisolitic iron ores and a Marra Mamba iron ore were pre-reduced and then used in a sinter pot test. A use of the pre-reduced iron ore was effective in decreasing a bonding agent rate at a given productivity. The reoxidation heat of the pre-reduced iron ore was estimated to be less than the combustion heat of the bonding agent being saved by use of the pre-reduced iron ore. The reoxidation heat is more effective in the sintering process than the combustion heat. The decrease of the bonding agent resulted in reduction of NOx emissions. A mass and heat balance shows that a use of a pre-reduced iron ore as a sinter raw material enables reduction of CO2 emissions not only at an ironmaking process but also at a whole integrated steel works.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.53.1625