Dynamic and Isothermal Reduction Swelling Behaviour of Olivine and Acid Iron Ore Pellets under Simulated Blast Furnace Shaft Conditions

Pellet swelling has been widely studied, being simultaneous with reduction reactions and common in the operation of blast furnaces. A tube furnace equipped with a camera recording system was used here to study the dynamic and isothermal reduction swelling behaviour of olivine and acid pellets under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2012, Vol.52(7), pp.1257-1265
Hauptverfasser: Iljana, Mikko, Mattila, Olli, Alatarvas, Tuomas, Visuri, Ville-Valtteri, Kurikkala, Jari, Paananen, Timo, Fabritius, Timo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pellet swelling has been widely studied, being simultaneous with reduction reactions and common in the operation of blast furnaces. A tube furnace equipped with a camera recording system was used here to study the dynamic and isothermal reduction swelling behaviour of olivine and acid pellets under simulated BF shaft conditions. The olivine pellets were magnetically separated into three fractions, containing low, medium and high amounts of magnetite in the core. The divalent iron (FeO) content of these fractions was 0.1 wt-%, 0.2 wt-% and 2.9 wt-%, respectively. Pellets with a large magnetite nucleus were observed to encompass numerous cracks, which was reflected in a poor LTD test value, while SiO2-rich reference pellets with a different slag chemistry had more restrained swelling and cracking behaviour in dynamic reduction. Swelling in the olivine pellets was associated with cracking at the boundary between the original magnetite nucleus and the hematite shell. The dynamic reduction swelling test results showed lower reduction swelling indices (max 17% in volume) than under isothermal conditions (max 51% in volume), in which case the pellets were suddenly exposed to a strongly reducing atmosphere. It is thus suggested that the reduction swelling behaviour of iron ore pellets should preferably be studied dynamically under simulated blast furnace conditions in order to achieve a realistic understanding of their swelling behaviour in a blast furnace.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.52.1257