Multi-objective Optimization of Ironmaking in the Blast Furnace with Top Gas Recycling

Concern about the growing carbon dioxide content in the atmosphere has induced increasing research activities in the search for means to suppress the emissions of CO2 in primary steelmaking. Blast furnace top gas recycling, combined with CO2 stripping, has been proposed as a promising concept. The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2010/10/15, Vol.50(10), pp.1380-1387
Hauptverfasser: Helle, Hannu, Helle, Mikko, Pettersson, Frank, Saxén, Henrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concern about the growing carbon dioxide content in the atmosphere has induced increasing research activities in the search for means to suppress the emissions of CO2 in primary steelmaking. Blast furnace top gas recycling, combined with CO2 stripping, has been proposed as a promising concept. The paper presents a numerical analysis of top gas recycling under massive oxygen enrichment of the blast based on a simulation of the process chain from coal and ore to liquid steel. Because of the conflicting goals of reducing both production costs and emissions, the task is formulated as a multi-objective optimization problem. The optimal states of the system studied were found to vary significantly on the Pareto frontier, which demonstrates that fundamentally different states of operation may be selected to strongly reduce the emissions, still keeping the steelmaking economically feasible. The findings stress the importance of selecting a proper state of operation for achieving a cost-efficient production of steel with reduced environmental impact. The results also show how emissions can be “artificially” reduced by minimizing the arising emissions within the system boundary.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.50.1380