Integer Geometry: Some Examples and Constructions

Integer Geometry is the geometry of points that are pairwise integer distances apart. An integer polygon is a convex set of n points in the plane such that no three points are collinear and the distance between any two points is an integer. Similarly an integer polyhedron is a convex set of n points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical gazette 1997-03, Vol.81 (490), p.18-28
Hauptverfasser: Peterson, Blake E., Jordan, James H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 490
container_start_page 18
container_title Mathematical gazette
container_volume 81
creator Peterson, Blake E.
Jordan, James H.
description Integer Geometry is the geometry of points that are pairwise integer distances apart. An integer polygon is a convex set of n points in the plane such that no three points are collinear and the distance between any two points is an integer. Similarly an integer polyhedron is a convex set of n points in space such that no three are collinear, each face is an integer polygon, no two faces are coplaner, and the points are all integer distances apart. The measure used to order such polygons and polyhedra is perimeter-plus which is the sum of all of the edges added to the sum of all of the diagonals [1]. The purpose of this paper is to provide pictures of some fundamental examples as well as a brief explanation of some of the constructions. We begin by looking at polygons and then use those to build polyhedra and conclude by examining two closely related examples of sixfaced polyhedra.
doi_str_mv 10.2307/3618764
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3618764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3618764</jstor_id><sourcerecordid>3618764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c994-ccf75b465ea36e30323fd5b9198f656a5d94b8beb58b00ce38a73771279904dc3</originalsourceid><addsrcrecordid>eNp1j81Kw0AURgdRMFbxFbIQXEXvzJ1fdxJqLRRc2H2YmdxIS5OUmQj27a20W1ffWRw-OIzdc3gSCOYZNbdGywtWCFC60ijsJSsAhKqUMuKa3eS8BQCLUheML4eJviiVCxp7mtLhpfw8Qjn_8f1-R7n0Q1vW45Cn9B2nzRFu2VXnd5nuzjtj67f5un6vVh-LZf26qqJzsoqxMypIrcijJgQU2LUqOO5sp5X2qnUy2EBB2QAQCa03aAwXxjmQbcQZezzdxjTmnKhr9mnT-3RoODR_oc059Gg-nMxtnsb0r_YL6MVPJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integer Geometry: Some Examples and Constructions</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Peterson, Blake E. ; Jordan, James H.</creator><creatorcontrib>Peterson, Blake E. ; Jordan, James H.</creatorcontrib><description>Integer Geometry is the geometry of points that are pairwise integer distances apart. An integer polygon is a convex set of n points in the plane such that no three points are collinear and the distance between any two points is an integer. Similarly an integer polyhedron is a convex set of n points in space such that no three are collinear, each face is an integer polygon, no two faces are coplaner, and the points are all integer distances apart. The measure used to order such polygons and polyhedra is perimeter-plus which is the sum of all of the edges added to the sum of all of the diagonals [1]. The purpose of this paper is to provide pictures of some fundamental examples as well as a brief explanation of some of the constructions. We begin by looking at polygons and then use those to build polyhedra and conclude by examining two closely related examples of sixfaced polyhedra.</description><identifier>ISSN: 0025-5572</identifier><identifier>EISSN: 2056-6328</identifier><identifier>DOI: 10.2307/3618764</identifier><language>eng</language><publisher>The Mathematical Association</publisher><subject>Buildings ; Geometry ; Integers ; Pentagons ; Polygons ; Polyhedrons ; Rectangles ; Trapezoids ; Triangles ; Vertices</subject><ispartof>Mathematical gazette, 1997-03, Vol.81 (490), p.18-28</ispartof><rights>Copyright 1997 The Mathematical Association</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c994-ccf75b465ea36e30323fd5b9198f656a5d94b8beb58b00ce38a73771279904dc3</citedby><cites>FETCH-LOGICAL-c994-ccf75b465ea36e30323fd5b9198f656a5d94b8beb58b00ce38a73771279904dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3618764$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3618764$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Peterson, Blake E.</creatorcontrib><creatorcontrib>Jordan, James H.</creatorcontrib><title>Integer Geometry: Some Examples and Constructions</title><title>Mathematical gazette</title><description>Integer Geometry is the geometry of points that are pairwise integer distances apart. An integer polygon is a convex set of n points in the plane such that no three points are collinear and the distance between any two points is an integer. Similarly an integer polyhedron is a convex set of n points in space such that no three are collinear, each face is an integer polygon, no two faces are coplaner, and the points are all integer distances apart. The measure used to order such polygons and polyhedra is perimeter-plus which is the sum of all of the edges added to the sum of all of the diagonals [1]. The purpose of this paper is to provide pictures of some fundamental examples as well as a brief explanation of some of the constructions. We begin by looking at polygons and then use those to build polyhedra and conclude by examining two closely related examples of sixfaced polyhedra.</description><subject>Buildings</subject><subject>Geometry</subject><subject>Integers</subject><subject>Pentagons</subject><subject>Polygons</subject><subject>Polyhedrons</subject><subject>Rectangles</subject><subject>Trapezoids</subject><subject>Triangles</subject><subject>Vertices</subject><issn>0025-5572</issn><issn>2056-6328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1j81Kw0AURgdRMFbxFbIQXEXvzJ1fdxJqLRRc2H2YmdxIS5OUmQj27a20W1ffWRw-OIzdc3gSCOYZNbdGywtWCFC60ijsJSsAhKqUMuKa3eS8BQCLUheML4eJviiVCxp7mtLhpfw8Qjn_8f1-R7n0Q1vW45Cn9B2nzRFu2VXnd5nuzjtj67f5un6vVh-LZf26qqJzsoqxMypIrcijJgQU2LUqOO5sp5X2qnUy2EBB2QAQCa03aAwXxjmQbcQZezzdxjTmnKhr9mnT-3RoODR_oc059Gg-nMxtnsb0r_YL6MVPJw</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Peterson, Blake E.</creator><creator>Jordan, James H.</creator><general>The Mathematical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970301</creationdate><title>Integer Geometry: Some Examples and Constructions</title><author>Peterson, Blake E. ; Jordan, James H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c994-ccf75b465ea36e30323fd5b9198f656a5d94b8beb58b00ce38a73771279904dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Buildings</topic><topic>Geometry</topic><topic>Integers</topic><topic>Pentagons</topic><topic>Polygons</topic><topic>Polyhedrons</topic><topic>Rectangles</topic><topic>Trapezoids</topic><topic>Triangles</topic><topic>Vertices</topic><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Blake E.</creatorcontrib><creatorcontrib>Jordan, James H.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical gazette</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Blake E.</au><au>Jordan, James H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integer Geometry: Some Examples and Constructions</atitle><jtitle>Mathematical gazette</jtitle><date>1997-03-01</date><risdate>1997</risdate><volume>81</volume><issue>490</issue><spage>18</spage><epage>28</epage><pages>18-28</pages><issn>0025-5572</issn><eissn>2056-6328</eissn><abstract>Integer Geometry is the geometry of points that are pairwise integer distances apart. An integer polygon is a convex set of n points in the plane such that no three points are collinear and the distance between any two points is an integer. Similarly an integer polyhedron is a convex set of n points in space such that no three are collinear, each face is an integer polygon, no two faces are coplaner, and the points are all integer distances apart. The measure used to order such polygons and polyhedra is perimeter-plus which is the sum of all of the edges added to the sum of all of the diagonals [1]. The purpose of this paper is to provide pictures of some fundamental examples as well as a brief explanation of some of the constructions. We begin by looking at polygons and then use those to build polyhedra and conclude by examining two closely related examples of sixfaced polyhedra.</abstract><pub>The Mathematical Association</pub><doi>10.2307/3618764</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5572
ispartof Mathematical gazette, 1997-03, Vol.81 (490), p.18-28
issn 0025-5572
2056-6328
language eng
recordid cdi_crossref_primary_10_2307_3618764
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Buildings
Geometry
Integers
Pentagons
Polygons
Polyhedrons
Rectangles
Trapezoids
Triangles
Vertices
title Integer Geometry: Some Examples and Constructions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integer%20Geometry:%20Some%20Examples%20and%20Constructions&rft.jtitle=Mathematical%20gazette&rft.au=Peterson,%20Blake%20E.&rft.date=1997-03-01&rft.volume=81&rft.issue=490&rft.spage=18&rft.epage=28&rft.pages=18-28&rft.issn=0025-5572&rft.eissn=2056-6328&rft_id=info:doi/10.2307/3618764&rft_dat=%3Cjstor_cross%3E3618764%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3618764&rfr_iscdi=true