Integer Geometry: Some Examples and Constructions

Integer Geometry is the geometry of points that are pairwise integer distances apart. An integer polygon is a convex set of n points in the plane such that no three points are collinear and the distance between any two points is an integer. Similarly an integer polyhedron is a convex set of n points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical gazette 1997-03, Vol.81 (490), p.18-28
Hauptverfasser: Peterson, Blake E., Jordan, James H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integer Geometry is the geometry of points that are pairwise integer distances apart. An integer polygon is a convex set of n points in the plane such that no three points are collinear and the distance between any two points is an integer. Similarly an integer polyhedron is a convex set of n points in space such that no three are collinear, each face is an integer polygon, no two faces are coplaner, and the points are all integer distances apart. The measure used to order such polygons and polyhedra is perimeter-plus which is the sum of all of the edges added to the sum of all of the diagonals [1]. The purpose of this paper is to provide pictures of some fundamental examples as well as a brief explanation of some of the constructions. We begin by looking at polygons and then use those to build polyhedra and conclude by examining two closely related examples of sixfaced polyhedra.
ISSN:0025-5572
2056-6328
DOI:10.2307/3618764