Thiazolidine Prodrugs of Cysteamine and Cysteine as Radioprotective Agents

The need for protection against the toxic effects of ionizing radiation comes from many different directions: occupational exposure, nuclear accidents, environmental sources and protection of normal tissue during the therapeutic irradiation of cancer. Sulfhydryl-containing compounds, including cyste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation Research 1995-08, Vol.143 (2), p.203-213
Hauptverfasser: Roberts, Jeanette C., Koch, Kimberly E., Detrick, Shauna R., Warters, Raymond L., Lubec, Gert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The need for protection against the toxic effects of ionizing radiation comes from many different directions: occupational exposure, nuclear accidents, environmental sources and protection of normal tissue during the therapeutic irradiation of cancer. Sulfhydryl-containing compounds, including cysteamine and L-cysteine, have long been known to possess radioprotective properties, but their therapeutic utility is limited by their side effects at radioprotective doses. To avoid this drawback, thiazolidine prodrugs of cysteamine and L-cysteine were prepared by the condensation of each thiolamine with the aldose monosaccharides, D-ribose and D-glucose, producing RibCyst, GlcCyst, RibCys and GlcCys. The produrgs were designed to liberate the parent thiolamine nonenzymatically, after ring opening and hydrolysis, which is then available to function as a radioprotective agent. Cysteamine's inherent toxicity, measured using Chinese hamster V79 cells growing in culture, was completely eliminated, even at concentrations as high as 25 mM, by providing the thiolamine in the form of a prodrug. Good protection against radiation-induced lethality was demonstrated by the cysteamine prodrugs using a clonogenic assay. Protection against radiation-induced DNA single-strand breaks, as measured by alkaline elution, was also shown by both RibCyst and GlcCyst; this activity was higher than that exhibited by either cysteamine or WR-1065. The L-cysteine prodrugs, RibCys and GlcCys, also possessed radioprotective abilities under most of the conditions studied. Protection against DNA damage was comparable between L-cysteine, WR-1065 and RibCys.
ISSN:0033-7587
1938-5404
DOI:10.2307/3579158