Signalling over a Gaussian channel with feedback and autoregressive noise
We study in detail the case of first-order regression, but our results can be extended to the general regression in a straightforward manner. An average energy constraint ((1.2) below) is imposed on each signal. In Section 2 we give an optimal linear signalling scheme (definition and proof in Sectio...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1975-12, Vol.12 (4), p.713-723 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study in detail the case of first-order regression, but our results can be extended to the general regression in a straightforward manner. An average energy constraint ((1.2) below) is imposed on each signal. In Section 2 we give an optimal linear signalling scheme (definition and proof in Section 4) for this channel. We conjecture that this scheme is optimal among all signalling schemes. Then the capacity C of the channel is (see Section 5) – log b, where b is the unique positive root (in x) of the equation x
2 = (1 + g
2(1 + |α|x)2)–1. Here a is the regression coefficient, and g
2 is the ratio of the average energy per signal to the variance of the noise. An equivalent expression is C = ½log(1 + g2(1 + |α| b)2). |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.2307/3212722 |