Signalling over a Gaussian channel with feedback and autoregressive noise

We study in detail the case of first-order regression, but our results can be extended to the general regression in a straightforward manner. An average energy constraint ((1.2) below) is imposed on each signal. In Section 2 we give an optimal linear signalling scheme (definition and proof in Sectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1975-12, Vol.12 (4), p.713-723
1. Verfasser: Wolfowitz, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study in detail the case of first-order regression, but our results can be extended to the general regression in a straightforward manner. An average energy constraint ((1.2) below) is imposed on each signal. In Section 2 we give an optimal linear signalling scheme (definition and proof in Section 4) for this channel. We conjecture that this scheme is optimal among all signalling schemes. Then the capacity C of the channel is (see Section 5) – log b, where b is the unique positive root (in x) of the equation x 2 = (1 + g 2(1 + |α|x)2)–1. Here a is the regression coefficient, and g 2 is the ratio of the average energy per signal to the variance of the noise. An equivalent expression is C = ½log(1 + g2(1 + |α| b)2).
ISSN:0021-9002
1475-6072
DOI:10.2307/3212722