On the Fitting of Generalized Linear Models with Nonnegativity Parameter Constraints
We consider the problem of finding maximum likelihood estimates of a generalized linear model when some or all of the regression parameters are constrained to be nonnegative. The Kuhn-Tucker conditions of nonlinear programming can be used to characterize the solution of this constrained estimation p...
Gespeichert in:
Veröffentlicht in: | Biometrics 1990-03, Vol.46 (1), p.201-206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of finding maximum likelihood estimates of a generalized linear model when some or all of the regression parameters are constrained to be nonnegative. The Kuhn-Tucker conditions of nonlinear programming can be used to characterize the solution of this constrained estimation problem when the maximum likelihood estimates exist and are unique. For the case of a generalized linear model with nonnegativity parameter constraints, the Kuhn-Tucker conditions are derived and utilized to provide a stopping rule for search algorithms for the constrained maximum likelihood estimates. Two examples are discussed. |
---|---|
ISSN: | 0006-341X 1541-0420 |
DOI: | 10.2307/2531643 |