On the Fitting of Generalized Linear Models with Nonnegativity Parameter Constraints

We consider the problem of finding maximum likelihood estimates of a generalized linear model when some or all of the regression parameters are constrained to be nonnegative. The Kuhn-Tucker conditions of nonlinear programming can be used to characterize the solution of this constrained estimation p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1990-03, Vol.46 (1), p.201-206
Hauptverfasser: McDonald, John W., Diamond, Ian D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of finding maximum likelihood estimates of a generalized linear model when some or all of the regression parameters are constrained to be nonnegative. The Kuhn-Tucker conditions of nonlinear programming can be used to characterize the solution of this constrained estimation problem when the maximum likelihood estimates exist and are unique. For the case of a generalized linear model with nonnegativity parameter constraints, the Kuhn-Tucker conditions are derived and utilized to provide a stopping rule for search algorithms for the constrained maximum likelihood estimates. Two examples are discussed.
ISSN:0006-341X
1541-0420
DOI:10.2307/2531643