An analytic completeness theorem for logics with probability quantifiers

We give a completeness theorem for a logic with probability quantifiers which is equivalent to the logics described in a recent survey paper of Keisler [K]. This result improves on the completeness theorems in [K] in that it works for languages with function symbols and produces a model whose univer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 1987-09, Vol.52 (3), p.802-816
1. Verfasser: Hoover, Douglas N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a completeness theorem for a logic with probability quantifiers which is equivalent to the logics described in a recent survey paper of Keisler [K]. This result improves on the completeness theorems in [K] in that it works for languages with function symbols and produces a model whose universe is an analytic subset of the real line, and whose relations and functions are Borel relative to this universe.
ISSN:0022-4812
1943-5886
DOI:10.2307/2274366