The Chromatic Convergence Theorem and a Tower in Algebraic K-Theory

In this note we show how the chromatic convergence theorem of Hopkins and Ravenel implies that a tower of relative algebraic K-theories constructed by Waldhausen converges to the p-local part of the algebraic K-theory of the one-point space relative to the K-theory of the integers. The notion of con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 1993-07, Vol.118 (3), p.1005-1012, Article 1005
Hauptverfasser: McClure, J. E., Staffeldt, R. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note we show how the chromatic convergence theorem of Hopkins and Ravenel implies that a tower of relative algebraic K-theories constructed by Waldhausen converges to the p-local part of the algebraic K-theory of the one-point space relative to the K-theory of the integers. The notion of convergence used here is made precise using the language of pro-homotopy theory.
ISSN:0002-9939
1088-6826
DOI:10.2307/2160154