Polar σ-Ideals of Compact Sets

Let E be a metric compact space. We consider the space K(E) of all compact subsets of E endowed with the topology of the Hausdorff metric and the space M(E) of all positive measures on E endowed with its natural w*-topology. We study σ-ideals of K(E) of the form I = Ip= {K ∈ K(E): μ(K) = 0, ∀ μ ∈ P}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 1995-01, Vol.347 (1), p.317-338
1. Verfasser: Debs, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let E be a metric compact space. We consider the space K(E) of all compact subsets of E endowed with the topology of the Hausdorff metric and the space M(E) of all positive measures on E endowed with its natural w*-topology. We study σ-ideals of K(E) of the form I = Ip= {K ∈ K(E): μ(K) = 0, ∀ μ ∈ P} where P is a given family of positive measures on E. If M is the maximal family such that I = IM, then M is a band. We prove that several descriptive properties of I: being Borel, and having a Borel basis, having a Borel polarity-basis, can be expressed by properties of the band M or of the orthogonal band M'.
ISSN:0002-9947
DOI:10.2307/2154800