The Use of Shears to Construct Paradoxes in $R^2
It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in $\mathbf{R}^2$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue mea...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1982-07, Vol.85 (3), p.353-359, Article 353 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 3 |
container_start_page | 353 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 85 |
creator | Wagon, Stanley |
description | It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in $\mathbf{R}^2$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue measure as a finitely additive measure. |
doi_str_mv | 10.2307/2043845 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2043845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2043845</jstor_id><sourcerecordid>2043845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-d6ff4173ebed4722c9a72f139a312d20a096b2fdbb38951ff352e6beca2ff5453</originalsourceid><addsrcrecordid>eNp1j81KAzEURoMoOFbxFbIouIpNbjIzyVIG_6BQ0XbrkMnk0il1IkkEfXsr7Up09fHB4cAh5FLwa5C8ngFXUqvyiBSCa80qDdUxKTjnwIyR5pScpbTZXWFUXRC-XHu6Sp4GpC9rb2OiOdAmjCnHD5fpk422D58-0WGk0-dXOCcnaLfJXxx2QlZ3t8vmgc0X94_NzZw5oVVmfYWoRC1953tVAzhja0AhjZUCeuCWm6oD7LtOalMKRFmCrzrvLCCWqpQTcrX3uhhSih7b9zi82fjVCt7-hLaH0B3JfpFuyDYPYczRDts_-Ome36Qc4r_ab2uiXVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Use of Shears to Construct Paradoxes in $R^2</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics & Statistics</source><creator>Wagon, Stanley</creator><creatorcontrib>Wagon, Stanley</creatorcontrib><description>It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in $\mathbf{R}^2$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue measure as a finitely additive measure.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.2307/2043845</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Circles ; Cubes ; Lebesgue measures ; Linear transformations ; Mathematical congruence ; Mathematical theorems ; Paradoxes ; Uniqueness ; Wagons</subject><ispartof>Proceedings of the American Mathematical Society, 1982-07, Vol.85 (3), p.353-359, Article 353</ispartof><rights>Copyright 1982 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c184t-d6ff4173ebed4722c9a72f139a312d20a096b2fdbb38951ff352e6beca2ff5453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2043845$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2043845$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Wagon, Stanley</creatorcontrib><title>The Use of Shears to Construct Paradoxes in $R^2</title><title>Proceedings of the American Mathematical Society</title><description>It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in $\mathbf{R}^2$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue measure as a finitely additive measure.</description><subject>Circles</subject><subject>Cubes</subject><subject>Lebesgue measures</subject><subject>Linear transformations</subject><subject>Mathematical congruence</subject><subject>Mathematical theorems</subject><subject>Paradoxes</subject><subject>Uniqueness</subject><subject>Wagons</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNp1j81KAzEURoMoOFbxFbIouIpNbjIzyVIG_6BQ0XbrkMnk0il1IkkEfXsr7Up09fHB4cAh5FLwa5C8ngFXUqvyiBSCa80qDdUxKTjnwIyR5pScpbTZXWFUXRC-XHu6Sp4GpC9rb2OiOdAmjCnHD5fpk422D58-0WGk0-dXOCcnaLfJXxx2QlZ3t8vmgc0X94_NzZw5oVVmfYWoRC1953tVAzhja0AhjZUCeuCWm6oD7LtOalMKRFmCrzrvLCCWqpQTcrX3uhhSih7b9zi82fjVCt7-hLaH0B3JfpFuyDYPYczRDts_-Ome36Qc4r_ab2uiXVs</recordid><startdate>19820701</startdate><enddate>19820701</enddate><creator>Wagon, Stanley</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19820701</creationdate><title>The Use of Shears to Construct Paradoxes in $R^2</title><author>Wagon, Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-d6ff4173ebed4722c9a72f139a312d20a096b2fdbb38951ff352e6beca2ff5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Circles</topic><topic>Cubes</topic><topic>Lebesgue measures</topic><topic>Linear transformations</topic><topic>Mathematical congruence</topic><topic>Mathematical theorems</topic><topic>Paradoxes</topic><topic>Uniqueness</topic><topic>Wagons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagon, Stanley</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagon, Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Shears to Construct Paradoxes in $R^2</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>1982-07-01</date><risdate>1982</risdate><volume>85</volume><issue>3</issue><spage>353</spage><epage>359</epage><pages>353-359</pages><artnum>353</artnum><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in $\mathbf{R}^2$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue measure as a finitely additive measure.</abstract><pub>American Mathematical Society</pub><doi>10.2307/2043845</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 1982-07, Vol.85 (3), p.353-359, Article 353 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_2307_2043845 |
source | Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics |
subjects | Circles Cubes Lebesgue measures Linear transformations Mathematical congruence Mathematical theorems Paradoxes Uniqueness Wagons |
title | The Use of Shears to Construct Paradoxes in $R^2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Shears%20to%20Construct%20Paradoxes%20in%20$R%5E2&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Wagon,%20Stanley&rft.date=1982-07-01&rft.volume=85&rft.issue=3&rft.spage=353&rft.epage=359&rft.pages=353-359&rft.artnum=353&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.2307/2043845&rft_dat=%3Cjstor_cross%3E2043845%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2043845&rfr_iscdi=true |