The Use of Shears to Construct Paradoxes in $R^2
It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in $\mathbf{R}^2$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue mea...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1982-07, Vol.85 (3), p.353-359, Article 353 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the addition of a certain shear transformation to the planar isometry group is sufficient to allow a Banach-Tarski type paradox to be constructed in $\mathbf{R}^2$. This paradox is then combined with a result of Rosenblatt to obtain a characterization of two-dimensional Lebesgue measure as a finitely additive measure. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.2307/2043845 |