Spaces for Which the Generalized Cantor Space $2^J$ is a Remainder
Let $X$ be a locally compact noncompact space, $m$ be an infinite cardinal and $|J| = m$. Let $F(X)$ be the algebra of continuous functions from $X$ into $\mathbf{R}$ which have finite range outside of an open set with compact closure and let $I(X) = \{g \in F(X): g\quad\text{vanishes outside of an...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1982-12, Vol.86 (4), p.673-678 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $X$ be a locally compact noncompact space, $m$ be an infinite cardinal and $|J| = m$. Let $F(X)$ be the algebra of continuous functions from $X$ into $\mathbf{R}$ which have finite range outside of an open set with compact closure and let $I(X) = \{g \in F(X): g\quad\text{vanishes outside of an open set with compact closure}\}$. Conditions on $R(X) = F(X)/I(X)$ and internal conditions are obtained which characterize when $X$ has $2^J$ as a remainder. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.2307/2043608 |