On Algebras Satisfying the Identity $(yx)x + x(xy) = 2(xy)x

Simple, strictly power-associative algebras satisfying the identity $(yx)x + x(xy) = 2(xy)x$ over a field of characteristic not 2 or 3 have been classified by F. Kosier as commutative Jordan, quasi-associative, or of degree less than three. In the present paper those of degree three or greater are s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 1972-02, Vol.31 (2), p.376-380
1. Verfasser: Chaffer, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simple, strictly power-associative algebras satisfying the identity $(yx)x + x(xy) = 2(xy)x$ over a field of characteristic not 2 or 3 have been classified by F. Kosier as commutative Jordan, quasi-associative, or of degree less than three. In the present paper those of degree three or greater are shown to be commutative, which eliminates the quasi-associative case mentioned above.
ISSN:0002-9939
1088-6826
DOI:10.2307/2037535