On Algebras Satisfying the Identity $(yx)x + x(xy) = 2(xy)x
Simple, strictly power-associative algebras satisfying the identity $(yx)x + x(xy) = 2(xy)x$ over a field of characteristic not 2 or 3 have been classified by F. Kosier as commutative Jordan, quasi-associative, or of degree less than three. In the present paper those of degree three or greater are s...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1972-02, Vol.31 (2), p.376-380 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simple, strictly power-associative algebras satisfying the identity $(yx)x + x(xy) = 2(xy)x$ over a field of characteristic not 2 or 3 have been classified by F. Kosier as commutative Jordan, quasi-associative, or of degree less than three. In the present paper those of degree three or greater are shown to be commutative, which eliminates the quasi-associative case mentioned above. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.2307/2037535 |