A bootstrap algorithm for the isotropic random sphere

Let be a real-valued, homogeneous, and isotropic random field indexed in . When restricted to those indices with , the Euclidean length of , equal to r (a positive constant), then the random field resides on the surface of a sphere of radius r. Using a modified stratified spherical sampling plan (Br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 1995-09, Vol.27 (3), p.627-641
1. Verfasser: Brown, Jason J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a real-valued, homogeneous, and isotropic random field indexed in . When restricted to those indices with , the Euclidean length of , equal to r (a positive constant), then the random field resides on the surface of a sphere of radius r. Using a modified stratified spherical sampling plan (Brown (1993a)) on the sphere, define to be a realization of the random process and to be the cardinality of . A bootstrap algorithm is presented and conditions for strong uniform consistency of the bootstrap cumulative distribution function of the standardized sample mean, , are given. We illustrate the bootstrap algorithm with global land-area data.
ISSN:0001-8678
1475-6064
DOI:10.2307/1428127