Univariate and Bivariate Loglinear Models for Discrete Test Score Distributions
The well-developed theory of exponential families of distributions is applied to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. These models are powerful tools for many forms of parametric data smoothin...
Gespeichert in:
Veröffentlicht in: | Journal of educational and behavioral statistics 2000, Vol.25 (2), p.133-183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | Journal of educational and behavioral statistics |
container_volume | 25 |
creator | Holland, Paul W. Thayer, Dorothy T. |
description | The well-developed theory of exponential families of distributions is applied to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. These models are powerful tools for many forms of parametric data smoothing and are particularly well-suited to problems in which there is little or no theory to guide a choice of probability models, e. g., smoothing a distribution to eliminate roughness and zero frequencies in order to equate scores from different tests. Attention is given to efficient computation of the maximum likelihood estimates of the parameters using Newton's Method and to computationally efficient methods for obtaining the asymptotic standard errors of the fitted frequencies and proportions. We discuss tools that can be used to diagnose the quality of the fitted frequencies for both the univariate and the bivariate cases. Five examples, using real data, are used to illustrate the methods of this paper. |
doi_str_mv | 10.2307/1165330 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1165330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ615868</ericid><jstor_id>1165330</jstor_id><sourcerecordid>1165330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1120-e4bbc16861f001fe0bf67f0186a34a3fccad50bf5c0b629b952ccc8f26554aac3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBBIlIL4AQ65cQp47dhxjlDKS0E90J4je2MjVyFGdkDi75uqVXva3ZnZ0WgIuQZ6xzgt7wGk4JyekAlUXORARXE67rSUeVUpeU4uUlpTCpwVfEIWq97_6ej1YDPdt9nj4arDV-d7q2P2EVrbpcyFmD35hNGO7NKmIfvEEO0WG6I3v4MPfbokZ053yV7t55SsnufL2WteL17eZg91jgCM5rYwBkEqCW6M4iw1TpaOgpKaF5o7RN2KERRIjWSVqQRDROWYFKLQGvmU3O58MYaUonXNT_TfOv43QJttD82-h1F5s1Pa6PGgmr9LEEqqI71OQ4hHl_33BgpqYng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Univariate and Bivariate Loglinear Models for Discrete Test Score Distributions</title><source>Jstor Complete Legacy</source><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Holland, Paul W. ; Thayer, Dorothy T.</creator><creatorcontrib>Holland, Paul W. ; Thayer, Dorothy T.</creatorcontrib><description>The well-developed theory of exponential families of distributions is applied to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. These models are powerful tools for many forms of parametric data smoothing and are particularly well-suited to problems in which there is little or no theory to guide a choice of probability models, e. g., smoothing a distribution to eliminate roughness and zero frequencies in order to equate scores from different tests. Attention is given to efficient computation of the maximum likelihood estimates of the parameters using Newton's Method and to computationally efficient methods for obtaining the asymptotic standard errors of the fitted frequencies and proportions. We discuss tools that can be used to diagnose the quality of the fitted frequencies for both the univariate and the bivariate cases. Five examples, using real data, are used to illustrate the methods of this paper.</description><identifier>ISSN: 1076-9986</identifier><identifier>EISSN: 1935-1054</identifier><identifier>DOI: 10.2307/1165330</identifier><language>eng</language><publisher>American Educational Research Association and American Statistical Association</publisher><subject>Binomials ; Covariance matrices ; Degrees of freedom ; Linear Models ; Mathematical moments ; Maximum Likelihood Statistics ; Milk yield ; Parametric models ; Scores ; Statistical Distributions ; Statistical variance ; Statistics ; Test Results ; Test scores ; Zero</subject><ispartof>Journal of educational and behavioral statistics, 2000, Vol.25 (2), p.133-183</ispartof><rights>Copyright 2000 The American Educational Research Association and the American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1120-e4bbc16861f001fe0bf67f0186a34a3fccad50bf5c0b629b952ccc8f26554aac3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1165330$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1165330$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ615868$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Holland, Paul W.</creatorcontrib><creatorcontrib>Thayer, Dorothy T.</creatorcontrib><title>Univariate and Bivariate Loglinear Models for Discrete Test Score Distributions</title><title>Journal of educational and behavioral statistics</title><description>The well-developed theory of exponential families of distributions is applied to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. These models are powerful tools for many forms of parametric data smoothing and are particularly well-suited to problems in which there is little or no theory to guide a choice of probability models, e. g., smoothing a distribution to eliminate roughness and zero frequencies in order to equate scores from different tests. Attention is given to efficient computation of the maximum likelihood estimates of the parameters using Newton's Method and to computationally efficient methods for obtaining the asymptotic standard errors of the fitted frequencies and proportions. We discuss tools that can be used to diagnose the quality of the fitted frequencies for both the univariate and the bivariate cases. Five examples, using real data, are used to illustrate the methods of this paper.</description><subject>Binomials</subject><subject>Covariance matrices</subject><subject>Degrees of freedom</subject><subject>Linear Models</subject><subject>Mathematical moments</subject><subject>Maximum Likelihood Statistics</subject><subject>Milk yield</subject><subject>Parametric models</subject><subject>Scores</subject><subject>Statistical Distributions</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Test Results</subject><subject>Test scores</subject><subject>Zero</subject><issn>1076-9986</issn><issn>1935-1054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpFUMtOwzAQtBBIlIL4AQ65cQp47dhxjlDKS0E90J4je2MjVyFGdkDi75uqVXva3ZnZ0WgIuQZ6xzgt7wGk4JyekAlUXORARXE67rSUeVUpeU4uUlpTCpwVfEIWq97_6ej1YDPdt9nj4arDV-d7q2P2EVrbpcyFmD35hNGO7NKmIfvEEO0WG6I3v4MPfbokZ053yV7t55SsnufL2WteL17eZg91jgCM5rYwBkEqCW6M4iw1TpaOgpKaF5o7RN2KERRIjWSVqQRDROWYFKLQGvmU3O58MYaUonXNT_TfOv43QJttD82-h1F5s1Pa6PGgmr9LEEqqI71OQ4hHl_33BgpqYng</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Holland, Paul W.</creator><creator>Thayer, Dorothy T.</creator><general>American Educational Research Association and American Statistical Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2000</creationdate><title>Univariate and Bivariate Loglinear Models for Discrete Test Score Distributions</title><author>Holland, Paul W. ; Thayer, Dorothy T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1120-e4bbc16861f001fe0bf67f0186a34a3fccad50bf5c0b629b952ccc8f26554aac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Binomials</topic><topic>Covariance matrices</topic><topic>Degrees of freedom</topic><topic>Linear Models</topic><topic>Mathematical moments</topic><topic>Maximum Likelihood Statistics</topic><topic>Milk yield</topic><topic>Parametric models</topic><topic>Scores</topic><topic>Statistical Distributions</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Test Results</topic><topic>Test scores</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holland, Paul W.</creatorcontrib><creatorcontrib>Thayer, Dorothy T.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Journal of educational and behavioral statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland, Paul W.</au><au>Thayer, Dorothy T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ615868</ericid><atitle>Univariate and Bivariate Loglinear Models for Discrete Test Score Distributions</atitle><jtitle>Journal of educational and behavioral statistics</jtitle><date>2000</date><risdate>2000</risdate><volume>25</volume><issue>2</issue><spage>133</spage><epage>183</epage><pages>133-183</pages><issn>1076-9986</issn><eissn>1935-1054</eissn><abstract>The well-developed theory of exponential families of distributions is applied to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. These models are powerful tools for many forms of parametric data smoothing and are particularly well-suited to problems in which there is little or no theory to guide a choice of probability models, e. g., smoothing a distribution to eliminate roughness and zero frequencies in order to equate scores from different tests. Attention is given to efficient computation of the maximum likelihood estimates of the parameters using Newton's Method and to computationally efficient methods for obtaining the asymptotic standard errors of the fitted frequencies and proportions. We discuss tools that can be used to diagnose the quality of the fitted frequencies for both the univariate and the bivariate cases. Five examples, using real data, are used to illustrate the methods of this paper.</abstract><pub>American Educational Research Association and American Statistical Association</pub><doi>10.2307/1165330</doi><tpages>51</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9986 |
ispartof | Journal of educational and behavioral statistics, 2000, Vol.25 (2), p.133-183 |
issn | 1076-9986 1935-1054 |
language | eng |
recordid | cdi_crossref_primary_10_2307_1165330 |
source | Jstor Complete Legacy; SAGE Complete; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Binomials Covariance matrices Degrees of freedom Linear Models Mathematical moments Maximum Likelihood Statistics Milk yield Parametric models Scores Statistical Distributions Statistical variance Statistics Test Results Test scores Zero |
title | Univariate and Bivariate Loglinear Models for Discrete Test Score Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Univariate%20and%20Bivariate%20Loglinear%20Models%20for%20Discrete%20Test%20Score%20Distributions&rft.jtitle=Journal%20of%20educational%20and%20behavioral%20statistics&rft.au=Holland,%20Paul%20W.&rft.date=2000&rft.volume=25&rft.issue=2&rft.spage=133&rft.epage=183&rft.pages=133-183&rft.issn=1076-9986&rft.eissn=1935-1054&rft_id=info:doi/10.2307/1165330&rft_dat=%3Cjstor_cross%3E1165330%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ615868&rft_jstor_id=1165330&rfr_iscdi=true |