Univariate and Bivariate Loglinear Models for Discrete Test Score Distributions

The well-developed theory of exponential families of distributions is applied to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. These models are powerful tools for many forms of parametric data smoothin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of educational and behavioral statistics 2000, Vol.25 (2), p.133-183
Hauptverfasser: Holland, Paul W., Thayer, Dorothy T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The well-developed theory of exponential families of distributions is applied to the problem of fitting the univariate histograms and discrete bivariate frequency distributions that often arise in the analysis of test scores. These models are powerful tools for many forms of parametric data smoothing and are particularly well-suited to problems in which there is little or no theory to guide a choice of probability models, e. g., smoothing a distribution to eliminate roughness and zero frequencies in order to equate scores from different tests. Attention is given to efficient computation of the maximum likelihood estimates of the parameters using Newton's Method and to computationally efficient methods for obtaining the asymptotic standard errors of the fitted frequencies and proportions. We discuss tools that can be used to diagnose the quality of the fitted frequencies for both the univariate and the bivariate cases. Five examples, using real data, are used to illustrate the methods of this paper.
ISSN:1076-9986
1935-1054
DOI:10.2307/1165330