Optimizing solar water heater performance through a numerical study of zig-zag shaped tubes

This study aimed to investigate the thermal behavior of water flows in a solar collector equipped with zig-zag tubes. To achieve this, a numerical simulation using CFD was conducted, which is a powerful tool for analyzing fluid-flow and heat transfer. The simulation employed the finite volume method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2023, Vol.27 (4 Part B), p.3143-3153
Hauptverfasser: Korti, Mohammed, Youcef, Ahmed, Akgul, Ali, Alwan, Abbas, Mohsen, Karrar, Asad, Jihad, Jarrar, Rabab, Shanak, Hussein, Menni, Younes, Abdullaev, Sherzod
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to investigate the thermal behavior of water flows in a solar collector equipped with zig-zag tubes. To achieve this, a numerical simulation using CFD was conducted, which is a powerful tool for analyzing fluid-flow and heat transfer. The simulation employed the finite volume method to discretize the fluid domain and the SIMPLE algorithm to solve the pressure-velocity coupling. The simulation results indicated that the shape of the tubes significantly influenced the flow behavior and overall performance of the solar collector. Specifically, the temperature profiles at various times of the day showed that zig-zag-shaped tubes enhanced the heat transfer coefficient, resulting in higher temperatures within the collector. Moreover, the zig-zag design increased the residence time of the fluid inside the collector, further improving its overall efficiency. These findings highlight the potential of utilizing zig-zag-shaped tubes to optimize the performance of solar water heating systems, which could have important implications for renewable energy applications.
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI2304143K