Hamiltonian surfaces in the 4-cube, 4-bit gray codes and Venn diagrams
We study Hamiltonian surfaces in the d-dimensional cube Id as intermediate objects useful for comparative analysis of Venn diagrams and Gray cycles. In particular we emphasize the importance of 0-Hamiltonian spheres and the "sphericity" of Gray odes in the context of reducible Venn diagram...
Gespeichert in:
Veröffentlicht in: | Publications de l'Institut mathématique (Belgrade) 2022, Vol.111 (125), p.17-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Hamiltonian surfaces in the d-dimensional cube Id as intermediate objects useful for comparative analysis of Venn diagrams and Gray cycles. In
particular we emphasize the importance of 0-Hamiltonian spheres and the
"sphericity" of Gray odes in the context of reducible Venn diagrams. For
illustration we show that precisely two, out of the nine known types of
4-bit Gray cycles, are not spherical. The unique, balanced Gray cycle is
spherical, which in turn leads to a new construction of a reducible Venn
diagram with 5 ellipses (originally constructed by P. Hamburger and R.E.
Pippert). |
---|---|
ISSN: | 0350-1302 1820-7405 |
DOI: | 10.2298/PIM2225017M |