Hamiltonian surfaces in the 4-cube, 4-bit gray codes and Venn diagrams

We study Hamiltonian surfaces in the d-dimensional cube Id as intermediate objects useful for comparative analysis of Venn diagrams and Gray cycles. In particular we emphasize the importance of 0-Hamiltonian spheres and the "sphericity" of Gray odes in the context of reducible Venn diagram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications de l'Institut mathématique (Belgrade) 2022, Vol.111 (125), p.17-40
Hauptverfasser: Muzika-Dizdarevic, Manuela, Zivaljevic, Rade
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Hamiltonian surfaces in the d-dimensional cube Id as intermediate objects useful for comparative analysis of Venn diagrams and Gray cycles. In particular we emphasize the importance of 0-Hamiltonian spheres and the "sphericity" of Gray odes in the context of reducible Venn diagrams. For illustration we show that precisely two, out of the nine known types of 4-bit Gray cycles, are not spherical. The unique, balanced Gray cycle is spherical, which in turn leads to a new construction of a reducible Venn diagram with 5 ellipses (originally constructed by P. Hamburger and R.E. Pippert).
ISSN:0350-1302
1820-7405
DOI:10.2298/PIM2225017M