Decompositions of 2 × 2 matrices over local rings

An element a of a ring R is called perfectly clean if there exists an idempotent e ? comm2(a) such that a?e ? U(R). A ring R is perfectly clean in case every element in R is perfectly clean. In this paper, we completely determine when every 2 ? 2 matrix and triangular matrix over local rings are per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications de l'Institut mathématique (Belgrade) 2016, Vol.100 (114), p.287-298
Hauptverfasser: Chen, Huanyin, Halicioglu, Sait, Kose, Handan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An element a of a ring R is called perfectly clean if there exists an idempotent e ? comm2(a) such that a?e ? U(R). A ring R is perfectly clean in case every element in R is perfectly clean. In this paper, we completely determine when every 2 ? 2 matrix and triangular matrix over local rings are perfectly clean. These give more explicit characterizations of strongly clean matrices over local rings. We also obtain several criteria for a triangular matrix to be perfectly J-clean. For instance, it is proved that for a commutative local ring R, every triangular matrix is perfectly J-clean in Tn(R) if and only if R is strongly J-clean. nema
ISSN:0350-1302
1820-7405
DOI:10.2298/PIM1614287C