Decompositions of 2 × 2 matrices over local rings
An element a of a ring R is called perfectly clean if there exists an idempotent e ? comm2(a) such that a?e ? U(R). A ring R is perfectly clean in case every element in R is perfectly clean. In this paper, we completely determine when every 2 ? 2 matrix and triangular matrix over local rings are per...
Gespeichert in:
Veröffentlicht in: | Publications de l'Institut mathématique (Belgrade) 2016, Vol.100 (114), p.287-298 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An element a of a ring R is called perfectly clean if there exists an
idempotent e ? comm2(a) such that a?e ? U(R). A ring R is perfectly clean in
case every element in R is perfectly clean. In this paper, we completely
determine when every 2 ? 2 matrix and triangular matrix over local rings are
perfectly clean. These give more explicit characterizations of strongly
clean matrices over local rings. We also obtain several criteria for a
triangular matrix to be perfectly J-clean. For instance, it is proved that
for a commutative local ring R, every triangular matrix is perfectly J-clean
in Tn(R) if and only if R is strongly J-clean.
nema |
---|---|
ISSN: | 0350-1302 1820-7405 |
DOI: | 10.2298/PIM1614287C |