On the conjugates of certain algebraic integers
A well-known theorem, due to C. J. Smyth, asserts that two conjugates of a Pisot number, having the same modulus are necessary complex conjugates. We show that this result remains true for K-Pisot numbers, where K is a real algebraic number field. Also, we prove that a j-Pisot number, where j is a n...
Gespeichert in:
Veröffentlicht in: | Publications de l'Institut mathématique (Belgrade) 2016, Vol.99 (113), p.281-285 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A well-known theorem, due to C. J. Smyth, asserts that two conjugates of a
Pisot number, having the same modulus are necessary complex conjugates. We
show that this result remains true for K-Pisot numbers, where K is a real
algebraic number field. Also, we prove that a j-Pisot number, where j is a
natural number, can not have more than 2j conjugates with the same modulus.
nema |
---|---|
ISSN: | 0350-1302 1820-7405 |
DOI: | 10.2298/PIM1613281Z |