On the conjugates of certain algebraic integers

A well-known theorem, due to C. J. Smyth, asserts that two conjugates of a Pisot number, having the same modulus are necessary complex conjugates. We show that this result remains true for K-Pisot numbers, where K is a real algebraic number field. Also, we prove that a j-Pisot number, where j is a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications de l'Institut mathématique (Belgrade) 2016, Vol.99 (113), p.281-285
1. Verfasser: Zaïmi, Toufik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A well-known theorem, due to C. J. Smyth, asserts that two conjugates of a Pisot number, having the same modulus are necessary complex conjugates. We show that this result remains true for K-Pisot numbers, where K is a real algebraic number field. Also, we prove that a j-Pisot number, where j is a natural number, can not have more than 2j conjugates with the same modulus. nema
ISSN:0350-1302
1820-7405
DOI:10.2298/PIM1613281Z