AR(1) time series with approximated Beta marginal
We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is given to the case p = 1 when the marginal distribution is approximated by the power law distribution closely connected with the Kumaraswamy distri...
Gespeichert in:
Veröffentlicht in: | Publications de l'Institut mathématique (Belgrade) 2010, Vol.88 (102), p.87-98 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 102 |
container_start_page | 87 |
container_title | Publications de l'Institut mathématique (Belgrade) |
container_volume | 88 |
creator | Popovic, Bozidar |
description | We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when
Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is
given to the case p = 1 when the marginal distribution is approximated by
the power law distribution closely connected with the Kumaraswamy
distribution Kum(p, q), p ? (0, 1], q > 1. Using the Laplace transform
technique, we prove that for p = 1 the distribution of the innovation
process is uniform discrete. For p ? (0, 1), the innovation process has a
continuous distribution. We also consider estimation issues of the model.
nema |
doi_str_mv | 10.2298/PIM1002087P |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_PIM1002087P</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_PIM1002087P</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c289b3eb76c640583f741f9cf295dddf2219ca10dc75330c26ea586de5926b273</originalsourceid><addsrcrecordid>eNpNj81KxDAYRYMoWEdXvkCWilS_fGn-luMw6sCIg-i6pPnRytQpSUB9eyu6cHPP7nIOIacMLhGNvtqs7hkAglabPVIxjVCrBsQ-qYALqBkHPCRHOb8BQKNAVoTNH8_YOS39EGgOqQ-ZfvTlldpxTLvPfrAleHodiqWDTS_9u90ek4Notzmc_HFGnm-WT4u7ev1wu1rM17VDBWVabToeOiWdnBQ0j6ph0biIRnjvIyIzzjLwTgnOwaEMVmjpgzAoO1R8Ri5-f13a5ZxCbMc0-aSvlkH7U9v-q-XfiA5Ftg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AR(1) time series with approximated Beta marginal</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Popovic, Bozidar</creator><creatorcontrib>Popovic, Bozidar</creatorcontrib><description>We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when
Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is
given to the case p = 1 when the marginal distribution is approximated by
the power law distribution closely connected with the Kumaraswamy
distribution Kum(p, q), p ? (0, 1], q > 1. Using the Laplace transform
technique, we prove that for p = 1 the distribution of the innovation
process is uniform discrete. For p ? (0, 1), the innovation process has a
continuous distribution. We also consider estimation issues of the model.
nema</description><identifier>ISSN: 0350-1302</identifier><identifier>EISSN: 1820-7405</identifier><identifier>DOI: 10.2298/PIM1002087P</identifier><language>eng</language><ispartof>Publications de l'Institut mathématique (Belgrade), 2010, Vol.88 (102), p.87-98</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-c289b3eb76c640583f741f9cf295dddf2219ca10dc75330c26ea586de5926b273</citedby><cites>FETCH-LOGICAL-c270t-c289b3eb76c640583f741f9cf295dddf2219ca10dc75330c26ea586de5926b273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>Popovic, Bozidar</creatorcontrib><title>AR(1) time series with approximated Beta marginal</title><title>Publications de l'Institut mathématique (Belgrade)</title><description>We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when
Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is
given to the case p = 1 when the marginal distribution is approximated by
the power law distribution closely connected with the Kumaraswamy
distribution Kum(p, q), p ? (0, 1], q > 1. Using the Laplace transform
technique, we prove that for p = 1 the distribution of the innovation
process is uniform discrete. For p ? (0, 1), the innovation process has a
continuous distribution. We also consider estimation issues of the model.
nema</description><issn>0350-1302</issn><issn>1820-7405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNj81KxDAYRYMoWEdXvkCWilS_fGn-luMw6sCIg-i6pPnRytQpSUB9eyu6cHPP7nIOIacMLhGNvtqs7hkAglabPVIxjVCrBsQ-qYALqBkHPCRHOb8BQKNAVoTNH8_YOS39EGgOqQ-ZfvTlldpxTLvPfrAleHodiqWDTS_9u90ek4Notzmc_HFGnm-WT4u7ev1wu1rM17VDBWVabToeOiWdnBQ0j6ph0biIRnjvIyIzzjLwTgnOwaEMVmjpgzAoO1R8Ri5-f13a5ZxCbMc0-aSvlkH7U9v-q-XfiA5Ftg</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Popovic, Bozidar</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>AR(1) time series with approximated Beta marginal</title><author>Popovic, Bozidar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c289b3eb76c640583f741f9cf295dddf2219ca10dc75330c26ea586de5926b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popovic, Bozidar</creatorcontrib><collection>CrossRef</collection><jtitle>Publications de l'Institut mathématique (Belgrade)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popovic, Bozidar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AR(1) time series with approximated Beta marginal</atitle><jtitle>Publications de l'Institut mathématique (Belgrade)</jtitle><date>2010</date><risdate>2010</risdate><volume>88</volume><issue>102</issue><spage>87</spage><epage>98</epage><pages>87-98</pages><issn>0350-1302</issn><eissn>1820-7405</eissn><abstract>We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when
Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is
given to the case p = 1 when the marginal distribution is approximated by
the power law distribution closely connected with the Kumaraswamy
distribution Kum(p, q), p ? (0, 1], q > 1. Using the Laplace transform
technique, we prove that for p = 1 the distribution of the innovation
process is uniform discrete. For p ? (0, 1), the innovation process has a
continuous distribution. We also consider estimation issues of the model.
nema</abstract><doi>10.2298/PIM1002087P</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0350-1302 |
ispartof | Publications de l'Institut mathématique (Belgrade), 2010, Vol.88 (102), p.87-98 |
issn | 0350-1302 1820-7405 |
language | eng |
recordid | cdi_crossref_primary_10_2298_PIM1002087P |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | AR(1) time series with approximated Beta marginal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AR(1)%20time%20series%20with%20approximated%20Beta%20marginal&rft.jtitle=Publications%20de%20l'Institut%20math%C3%A9matique%20(Belgrade)&rft.au=Popovic,%20Bozidar&rft.date=2010&rft.volume=88&rft.issue=102&rft.spage=87&rft.epage=98&rft.pages=87-98&rft.issn=0350-1302&rft.eissn=1820-7405&rft_id=info:doi/10.2298/PIM1002087P&rft_dat=%3Ccrossref%3E10_2298_PIM1002087P%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |