AR(1) time series with approximated Beta marginal

We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is given to the case p = 1 when the marginal distribution is approximated by the power law distribution closely connected with the Kumaraswamy distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications de l'Institut mathématique (Belgrade) 2010, Vol.88 (102), p.87-98
1. Verfasser: Popovic, Bozidar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is given to the case p = 1 when the marginal distribution is approximated by the power law distribution closely connected with the Kumaraswamy distribution Kum(p, q), p ? (0, 1], q > 1. Using the Laplace transform technique, we prove that for p = 1 the distribution of the innovation process is uniform discrete. For p ? (0, 1), the innovation process has a continuous distribution. We also consider estimation issues of the model. nema
ISSN:0350-1302
1820-7405
DOI:10.2298/PIM1002087P