AR(1) time series with approximated Beta marginal
We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is given to the case p = 1 when the marginal distribution is approximated by the power law distribution closely connected with the Kumaraswamy distri...
Gespeichert in:
Veröffentlicht in: | Publications de l'Institut mathématique (Belgrade) 2010, Vol.88 (102), p.87-98 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the AR(1) time series model Xt ? ?Xt?1 = ?t, ??p ? N \ {1}, when
Xt has Beta distribution B(p, q), p ? (0, 1], q > 1. Special attention is
given to the case p = 1 when the marginal distribution is approximated by
the power law distribution closely connected with the Kumaraswamy
distribution Kum(p, q), p ? (0, 1], q > 1. Using the Laplace transform
technique, we prove that for p = 1 the distribution of the innovation
process is uniform discrete. For p ? (0, 1), the innovation process has a
continuous distribution. We also consider estimation issues of the model.
nema |
---|---|
ISSN: | 0350-1302 1820-7405 |
DOI: | 10.2298/PIM1002087P |