Convolutions and mean square estimates of certain number-theoretic error terms
We study the convolution function C[f(x)]:=\int_1^x f(y)f\Bigl(\frac xy\Bigr)\frac{dy}y When f(x) is a suitable number-theoretic error term. Asymptotics and upper bounds for C[f(x)] are derived from mean square bounds for f(x). Some applications are given, in particular to |\zeta(\tfrac12+ix)|^{2k}...
Gespeichert in:
Veröffentlicht in: | Publications de l'Institut mathématique (Belgrade) 2006, Vol.80 (94), p.141-156 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the convolution function C[f(x)]:=\int_1^x f(y)f\Bigl(\frac xy\Bigr)\frac{dy}y When f(x) is a suitable number-theoretic error term. Asymptotics and upper bounds for C[f(x)] are derived from mean square bounds for f(x). Some applications are given, in particular to |\zeta(\tfrac12+ix)|^{2k} and the classical Rankin--Selberg problem from analytic number theory. |
---|---|
ISSN: | 0350-1302 1820-7405 |
DOI: | 10.2298/PIM0694141I |