Shape of impulse response characteristics of linear-phase nonrecursive 2D FIR filter function

An analytical method for the new class of linear-phase multiplierless 2D FIR filter functions generated by applying the Christoffel-Darboux formula for classical Chebyshev polynomials of the first and the second kind, proposed in [6] was used for designing of linear-phase multiplierless 2D FIR filte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Facta universitatis. Series Electronics and energetics 2013, Vol.26 (2), p.133-143
Hauptverfasser: Pavlovic, Vlastimir, Milic, Dejan, Djordjevic-Kozarov, Jelena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analytical method for the new class of linear-phase multiplierless 2D FIR filter functions generated by applying the Christoffel-Darboux formula for classical Chebyshev polynomials of the first and the second kind, proposed in [6] was used for designing of linear-phase multiplierless 2D FIR filter described in this paper. Correct transformation from continuous two-dimensional domain into the z domains without residuum and without errors is described. The proposed solution high selectivity is a filter function in the z1 domain, and the Hilbert transformer in the z2 domain. The impulse response coefficients of proposed 2D FIR filter functions are presented in this paper, and corresponding examples of impulse response are illustrated. The paper also presents detailed analysis of the size of pass-band and stop-band of proposed multiplierless linear-phase 2D FIR filter function. Normalized surface area of the filter function pass-band is 3.45789156 10-5 for given maximal attenuation of 0.28 dB. Normalized surface area of the filter function stop-band is 80.395% for the given minimal attenuation of 100 dB.
ISSN:0353-3670
2217-5997
DOI:10.2298/FUEE1302133P