Non-global nonlinear lie n-derivations on unital algebras with idempotents
Let T be a unital algebra with nontrivial idempotents. For any s1, s2,... , sn ? T, define p1(s1) = s1, p2(s1, s2) = [s1, s2] and pn(s1, s2,..., sn) = [pn?1(s1, s2,..., sn?1), sn] for all integers n ? 3. In the present article, it is shown that if a map ? : T ? T satisfies ?(pn(s1, s2,..., sn)) = ?n...
Gespeichert in:
Veröffentlicht in: | Filomat 2023, Vol.37 (30), p.10323-10339 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let T be a unital algebra with nontrivial idempotents. For any s1, s2,...
, sn ? T, define p1(s1) = s1, p2(s1, s2) = [s1, s2] and pn(s1, s2,...,
sn) = [pn?1(s1, s2,..., sn?1), sn] for all integers n ? 3. In the
present article, it is shown that if a map ? : T ? T satisfies ?(pn(s1, s2,..., sn)) = ?n i=1 pn(s1,..., si?1,?(si), si+1,..., sn) (n ? 3)
for all s1, s2,..., sn ? T with s1s2...sn = 0, then ?(s + t) ? ?(s)
? ?(t) ? Z(T) for all s, t ? T, and under some mild assumptions ? is of the
form ? + ?, where ? : T ? T is an additive derivation and ? : T ? Z(T) is a
map such that ?(pn(s1, s2,..., sn)) = 0 for all s1, s2,..., sn ? T
with s1s2... sn = 0. The above results are then applied to certain
special classes of unital algebras, namely triangular algebras, full matrix
algebras and algebra of all bounded linear operators. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2330323A |