Upper and lower estimations of Popoviciu’s difference via weighted Hadamard inequality with applications

We consider differences coming from Popoviciu?s inequality and give upper and lower bounds by employing weighted Hermite-Hadamard inequality along with the approximations of Montgomery two point formula. We also give bounds for Popoviciu?s inequality by employing weighted Hermite-Hadamard inequality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (22), p.7641-7662
Hauptverfasser: Butt, S.I., Rasheed, T., Pecaric, D., Pecaric, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider differences coming from Popoviciu?s inequality and give upper and lower bounds by employing weighted Hermite-Hadamard inequality along with the approximations of Montgomery two point formula. We also give bounds for Popoviciu?s inequality by employing weighted Hermite-Hadamard inequality along with the approximations of Montgomery one point formula. We testify this scenario by utilizing the theory of n-times differentiable convex functions. Our results hold for all n ? 2 and we provide explicit examples to show the correctness of the bounds obtained for special cases. Last but not least, we provide applications in information theory by providing new uniform estimations of the generalized Csiszar divergence, Renyi-divergence, Shannon-entropy, Kullback-Leibler divergence, Zipf and Hybrid Zipf-Mandelbrot entropies.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2322641B