The strong Dunford-Pettis relatively compact property of order p

We introduce and study Banach lattices with the strong Dunford-Pettis relatively compact property of order p (1 ? p < ?); that is, spaces in which every weakly p-compact and almost Dunford-Pettis set is relatively compact. We also introduce the notion of the weak Dunford-Pettis property of order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (22), p.7339-7349
Hauptverfasser: Ardakani, Halimeh, Taghavinejad, Khadijeh, Rezagholi, Sharifeh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7349
container_issue 22
container_start_page 7339
container_title Filomat
container_volume 37
creator Ardakani, Halimeh
Taghavinejad, Khadijeh
Rezagholi, Sharifeh
description We introduce and study Banach lattices with the strong Dunford-Pettis relatively compact property of order p (1 ? p < ?); that is, spaces in which every weakly p-compact and almost Dunford-Pettis set is relatively compact. We also introduce the notion of the weak Dunford-Pettis property of order p and then characterize this property in terms of sequences. In particular, in terms of disjoint weakly compact operators into c0, an operator characterization of those Banach lattices with the weak Dunford-Pettis property of order p is given. Moreover, some results about Banach lattices with the positive Dunford-Pettis relatively compact property of order p are presented
doi_str_mv 10.2298/FIL2322339A
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2322339A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2322339A</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-a87ef7c842e21c6f5469eca5e66af6193ad48411a8f61d0ba431030640f436163</originalsourceid><addsrcrecordid>eNpNj8FKxDAURYMoWEdX_kD2Un3JS9N05zA6OlDQxbguMX3RSmdSkij07x3RhavDhcOFw9ilgGspG3Oz3rQSpURslkeskAp0CQ3iMSsAK1VWwsApO0vpA0BJreqC3W7fiaccw_6N333ufYh9-Uw5D4lHGm0evmicuQu7ybrMpxgminnmwfODSZFP5-zE2zHRxR8X7GV9v109lu3Tw2a1bEsnpcmlNTX52hklSQqnfaV0Q85WpLX1WjRoe2WUENYcVg-vVqEABK3AK9RC44Jd_f66GFKK5LspDjsb505A9xPf_YvHb3r5S-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The strong Dunford-Pettis relatively compact property of order p</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ardakani, Halimeh ; Taghavinejad, Khadijeh ; Rezagholi, Sharifeh</creator><creatorcontrib>Ardakani, Halimeh ; Taghavinejad, Khadijeh ; Rezagholi, Sharifeh</creatorcontrib><description>We introduce and study Banach lattices with the strong Dunford-Pettis relatively compact property of order p (1 ? p &lt; ?); that is, spaces in which every weakly p-compact and almost Dunford-Pettis set is relatively compact. We also introduce the notion of the weak Dunford-Pettis property of order p and then characterize this property in terms of sequences. In particular, in terms of disjoint weakly compact operators into c0, an operator characterization of those Banach lattices with the weak Dunford-Pettis property of order p is given. Moreover, some results about Banach lattices with the positive Dunford-Pettis relatively compact property of order p are presented</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2322339A</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (22), p.7339-7349</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-a87ef7c842e21c6f5469eca5e66af6193ad48411a8f61d0ba431030640f436163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ardakani, Halimeh</creatorcontrib><creatorcontrib>Taghavinejad, Khadijeh</creatorcontrib><creatorcontrib>Rezagholi, Sharifeh</creatorcontrib><title>The strong Dunford-Pettis relatively compact property of order p</title><title>Filomat</title><description>We introduce and study Banach lattices with the strong Dunford-Pettis relatively compact property of order p (1 ? p &lt; ?); that is, spaces in which every weakly p-compact and almost Dunford-Pettis set is relatively compact. We also introduce the notion of the weak Dunford-Pettis property of order p and then characterize this property in terms of sequences. In particular, in terms of disjoint weakly compact operators into c0, an operator characterization of those Banach lattices with the weak Dunford-Pettis property of order p is given. Moreover, some results about Banach lattices with the positive Dunford-Pettis relatively compact property of order p are presented</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNj8FKxDAURYMoWEdX_kD2Un3JS9N05zA6OlDQxbguMX3RSmdSkij07x3RhavDhcOFw9ilgGspG3Oz3rQSpURslkeskAp0CQ3iMSsAK1VWwsApO0vpA0BJreqC3W7fiaccw_6N333ufYh9-Uw5D4lHGm0evmicuQu7ybrMpxgminnmwfODSZFP5-zE2zHRxR8X7GV9v109lu3Tw2a1bEsnpcmlNTX52hklSQqnfaV0Q85WpLX1WjRoe2WUENYcVg-vVqEABK3AK9RC44Jd_f66GFKK5LspDjsb505A9xPf_YvHb3r5S-I</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ardakani, Halimeh</creator><creator>Taghavinejad, Khadijeh</creator><creator>Rezagholi, Sharifeh</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>The strong Dunford-Pettis relatively compact property of order p</title><author>Ardakani, Halimeh ; Taghavinejad, Khadijeh ; Rezagholi, Sharifeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-a87ef7c842e21c6f5469eca5e66af6193ad48411a8f61d0ba431030640f436163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ardakani, Halimeh</creatorcontrib><creatorcontrib>Taghavinejad, Khadijeh</creatorcontrib><creatorcontrib>Rezagholi, Sharifeh</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ardakani, Halimeh</au><au>Taghavinejad, Khadijeh</au><au>Rezagholi, Sharifeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The strong Dunford-Pettis relatively compact property of order p</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>22</issue><spage>7339</spage><epage>7349</epage><pages>7339-7349</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>We introduce and study Banach lattices with the strong Dunford-Pettis relatively compact property of order p (1 ? p &lt; ?); that is, spaces in which every weakly p-compact and almost Dunford-Pettis set is relatively compact. We also introduce the notion of the weak Dunford-Pettis property of order p and then characterize this property in terms of sequences. In particular, in terms of disjoint weakly compact operators into c0, an operator characterization of those Banach lattices with the weak Dunford-Pettis property of order p is given. Moreover, some results about Banach lattices with the positive Dunford-Pettis relatively compact property of order p are presented</abstract><doi>10.2298/FIL2322339A</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2023, Vol.37 (22), p.7339-7349
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL2322339A
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title The strong Dunford-Pettis relatively compact property of order p
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20strong%20Dunford-Pettis%20relatively%20compact%20property%20of%20order%20p&rft.jtitle=Filomat&rft.au=Ardakani,%20Halimeh&rft.date=2023&rft.volume=37&rft.issue=22&rft.spage=7339&rft.epage=7349&rft.pages=7339-7349&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2322339A&rft_dat=%3Ccrossref%3E10_2298_FIL2322339A%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true