The strong Dunford-Pettis relatively compact property of order p

We introduce and study Banach lattices with the strong Dunford-Pettis relatively compact property of order p (1 ? p < ?); that is, spaces in which every weakly p-compact and almost Dunford-Pettis set is relatively compact. We also introduce the notion of the weak Dunford-Pettis property of order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (22), p.7339-7349
Hauptverfasser: Ardakani, Halimeh, Taghavinejad, Khadijeh, Rezagholi, Sharifeh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and study Banach lattices with the strong Dunford-Pettis relatively compact property of order p (1 ? p < ?); that is, spaces in which every weakly p-compact and almost Dunford-Pettis set is relatively compact. We also introduce the notion of the weak Dunford-Pettis property of order p and then characterize this property in terms of sequences. In particular, in terms of disjoint weakly compact operators into c0, an operator characterization of those Banach lattices with the weak Dunford-Pettis property of order p is given. Moreover, some results about Banach lattices with the positive Dunford-Pettis relatively compact property of order p are presented
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2322339A