Asymptotic normality of the Stirling-Whitney-Riordan triangle
Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0 satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 + ?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In thi...
Gespeichert in:
Veröffentlicht in: | Filomat 2023, Vol.37 (9), p.2923-2934 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2934 |
---|---|
container_issue | 9 |
container_start_page | 2923 |
container_title | Filomat |
container_volume | 37 |
creator | Guo, Wan-Ming Liu, Lily |
description | Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0
satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 +
?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions
Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this
paper, we show the asymptotic normality of Tn,k and give an asymptotic
formula of Tn. As applications, we show the asymptotic normality of many
famous combinatorial numbers, such as the Stirling numbers of the second
kind, the Whitney numbers of the second kind, the r-Stirling numbers and the
r-Whitney numbers of the second kind. |
doi_str_mv | 10.2298/FIL2309923G |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2309923G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2309923G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-4d2ead4f7a254bb2999c41ce8311797cea2ecb41543321c03e89c7dd5e30cd463</originalsourceid><addsrcrecordid>eNpNz7tKBDEUgOEgCo6rlS8wvURPzslcUlgsi7suDAhesBwySWY3MpclSTNvL6KF1d_98DF2K-AeUdUP232DBEoh7c5YhhJKDoronGVAheSFqOGSXcX4BSCxlFXGHtdxGU9pTt7k0xxGPfi05HOfp6PL35IPg58O_PPo0-QW_urnYPWUp-D1dBjcNbvo9RDdzV9X7GP79L555s3Lbr9ZN9wg1olLi05b2VcaC9l1qJQyUhhXkxCVqozT6EwnRSGJUBggVytTWVs4AmNlSSt29_s1YY4xuL49BT_qsLQC2h95-09O39WyS-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic normality of the Stirling-Whitney-Riordan triangle</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guo, Wan-Ming ; Liu, Lily</creator><creatorcontrib>Guo, Wan-Ming ; Liu, Lily</creatorcontrib><description>Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0
satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 +
?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions
Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this
paper, we show the asymptotic normality of Tn,k and give an asymptotic
formula of Tn. As applications, we show the asymptotic normality of many
famous combinatorial numbers, such as the Stirling numbers of the second
kind, the Whitney numbers of the second kind, the r-Stirling numbers and the
r-Whitney numbers of the second kind.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2309923G</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (9), p.2923-2934</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-4d2ead4f7a254bb2999c41ce8311797cea2ecb41543321c03e89c7dd5e30cd463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Guo, Wan-Ming</creatorcontrib><creatorcontrib>Liu, Lily</creatorcontrib><title>Asymptotic normality of the Stirling-Whitney-Riordan triangle</title><title>Filomat</title><description>Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0
satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 +
?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions
Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this
paper, we show the asymptotic normality of Tn,k and give an asymptotic
formula of Tn. As applications, we show the asymptotic normality of many
famous combinatorial numbers, such as the Stirling numbers of the second
kind, the Whitney numbers of the second kind, the r-Stirling numbers and the
r-Whitney numbers of the second kind.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNz7tKBDEUgOEgCo6rlS8wvURPzslcUlgsi7suDAhesBwySWY3MpclSTNvL6KF1d_98DF2K-AeUdUP232DBEoh7c5YhhJKDoronGVAheSFqOGSXcX4BSCxlFXGHtdxGU9pTt7k0xxGPfi05HOfp6PL35IPg58O_PPo0-QW_urnYPWUp-D1dBjcNbvo9RDdzV9X7GP79L555s3Lbr9ZN9wg1olLi05b2VcaC9l1qJQyUhhXkxCVqozT6EwnRSGJUBggVytTWVs4AmNlSSt29_s1YY4xuL49BT_qsLQC2h95-09O39WyS-Q</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Guo, Wan-Ming</creator><creator>Liu, Lily</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Asymptotic normality of the Stirling-Whitney-Riordan triangle</title><author>Guo, Wan-Ming ; Liu, Lily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-4d2ead4f7a254bb2999c41ce8311797cea2ecb41543321c03e89c7dd5e30cd463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wan-Ming</creatorcontrib><creatorcontrib>Liu, Lily</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wan-Ming</au><au>Liu, Lily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic normality of the Stirling-Whitney-Riordan triangle</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>9</issue><spage>2923</spage><epage>2934</epage><pages>2923-2934</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0
satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 +
?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions
Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this
paper, we show the asymptotic normality of Tn,k and give an asymptotic
formula of Tn. As applications, we show the asymptotic normality of many
famous combinatorial numbers, such as the Stirling numbers of the second
kind, the Whitney numbers of the second kind, the r-Stirling numbers and the
r-Whitney numbers of the second kind.</abstract><doi>10.2298/FIL2309923G</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2023, Vol.37 (9), p.2923-2934 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL2309923G |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Asymptotic normality of the Stirling-Whitney-Riordan triangle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20normality%20of%20the%20Stirling-Whitney-Riordan%20triangle&rft.jtitle=Filomat&rft.au=Guo,%20Wan-Ming&rft.date=2023&rft.volume=37&rft.issue=9&rft.spage=2923&rft.epage=2934&rft.pages=2923-2934&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2309923G&rft_dat=%3Ccrossref%3E10_2298_FIL2309923G%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |