Asymptotic normality of the Stirling-Whitney-Riordan triangle

Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0 satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 + ?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (9), p.2923-2934
Hauptverfasser: Guo, Wan-Ming, Liu, Lily
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2934
container_issue 9
container_start_page 2923
container_title Filomat
container_volume 37
creator Guo, Wan-Ming
Liu, Lily
description Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0 satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 + ?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this paper, we show the asymptotic normality of Tn,k and give an asymptotic formula of Tn. As applications, we show the asymptotic normality of many famous combinatorial numbers, such as the Stirling numbers of the second kind, the Whitney numbers of the second kind, the r-Stirling numbers and the r-Whitney numbers of the second kind.
doi_str_mv 10.2298/FIL2309923G
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2309923G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2309923G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-4d2ead4f7a254bb2999c41ce8311797cea2ecb41543321c03e89c7dd5e30cd463</originalsourceid><addsrcrecordid>eNpNz7tKBDEUgOEgCo6rlS8wvURPzslcUlgsi7suDAhesBwySWY3MpclSTNvL6KF1d_98DF2K-AeUdUP232DBEoh7c5YhhJKDoronGVAheSFqOGSXcX4BSCxlFXGHtdxGU9pTt7k0xxGPfi05HOfp6PL35IPg58O_PPo0-QW_urnYPWUp-D1dBjcNbvo9RDdzV9X7GP79L555s3Lbr9ZN9wg1olLi05b2VcaC9l1qJQyUhhXkxCVqozT6EwnRSGJUBggVytTWVs4AmNlSSt29_s1YY4xuL49BT_qsLQC2h95-09O39WyS-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic normality of the Stirling-Whitney-Riordan triangle</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guo, Wan-Ming ; Liu, Lily</creator><creatorcontrib>Guo, Wan-Ming ; Liu, Lily</creatorcontrib><description>Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0 satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 + ?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this paper, we show the asymptotic normality of Tn,k and give an asymptotic formula of Tn. As applications, we show the asymptotic normality of many famous combinatorial numbers, such as the Stirling numbers of the second kind, the Whitney numbers of the second kind, the r-Stirling numbers and the r-Whitney numbers of the second kind.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2309923G</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (9), p.2923-2934</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-4d2ead4f7a254bb2999c41ce8311797cea2ecb41543321c03e89c7dd5e30cd463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Guo, Wan-Ming</creatorcontrib><creatorcontrib>Liu, Lily</creatorcontrib><title>Asymptotic normality of the Stirling-Whitney-Riordan triangle</title><title>Filomat</title><description>Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0 satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 + ?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this paper, we show the asymptotic normality of Tn,k and give an asymptotic formula of Tn. As applications, we show the asymptotic normality of many famous combinatorial numbers, such as the Stirling numbers of the second kind, the Whitney numbers of the second kind, the r-Stirling numbers and the r-Whitney numbers of the second kind.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNz7tKBDEUgOEgCo6rlS8wvURPzslcUlgsi7suDAhesBwySWY3MpclSTNvL6KF1d_98DF2K-AeUdUP232DBEoh7c5YhhJKDoronGVAheSFqOGSXcX4BSCxlFXGHtdxGU9pTt7k0xxGPfi05HOfp6PL35IPg58O_PPo0-QW_urnYPWUp-D1dBjcNbvo9RDdzV9X7GP79L555s3Lbr9ZN9wg1olLi05b2VcaC9l1qJQyUhhXkxCVqozT6EwnRSGJUBggVytTWVs4AmNlSSt29_s1YY4xuL49BT_qsLQC2h95-09O39WyS-Q</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Guo, Wan-Ming</creator><creator>Liu, Lily</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Asymptotic normality of the Stirling-Whitney-Riordan triangle</title><author>Guo, Wan-Ming ; Liu, Lily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-4d2ead4f7a254bb2999c41ce8311797cea2ecb41543321c03e89c7dd5e30cd463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wan-Ming</creatorcontrib><creatorcontrib>Liu, Lily</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wan-Ming</au><au>Liu, Lily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic normality of the Stirling-Whitney-Riordan triangle</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>9</issue><spage>2923</spage><epage>2934</epage><pages>2923-2934</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0 satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 + ?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this paper, we show the asymptotic normality of Tn,k and give an asymptotic formula of Tn. As applications, we show the asymptotic normality of many famous combinatorial numbers, such as the Stirling numbers of the second kind, the Whitney numbers of the second kind, the r-Stirling numbers and the r-Whitney numbers of the second kind.</abstract><doi>10.2298/FIL2309923G</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2023, Vol.37 (9), p.2923-2934
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL2309923G
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Asymptotic normality of the Stirling-Whitney-Riordan triangle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20normality%20of%20the%20Stirling-Whitney-Riordan%20triangle&rft.jtitle=Filomat&rft.au=Guo,%20Wan-Ming&rft.date=2023&rft.volume=37&rft.issue=9&rft.spage=2923&rft.epage=2934&rft.pages=2923-2934&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2309923G&rft_dat=%3Ccrossref%3E10_2298_FIL2309923G%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true