Asymptotic normality of the Stirling-Whitney-Riordan triangle

Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0 satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 + ?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (9), p.2923-2934
Hauptverfasser: Guo, Wan-Ming, Liu, Lily
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k?0 satisfying the recurrence Tn,k = (b1k + b2)Tn?1,k?1 + [(2?b1 + a1)k + a2 + ?(b1 + b2)]Tn?1,k + ?(a1 + ?b1)(k + 1)Tn?1,k+1, where initial conditions Tn,k = 0 unless 0 ? k ? n and T0,0 = 1. Denote by Tn = Pnk =0 Tn,k. In this paper, we show the asymptotic normality of Tn,k and give an asymptotic formula of Tn. As applications, we show the asymptotic normality of many famous combinatorial numbers, such as the Stirling numbers of the second kind, the Whitney numbers of the second kind, the r-Stirling numbers and the r-Whitney numbers of the second kind.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2309923G